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The recent technological advances in environmental monitoring coupled with the 

increasingly stringent effluent requirements being placed on waste treatment systems 

makes it vital to have a more complete understanding of how specific compounds in 

waste streams can impact wastewater treatment processes.  Since activated sludge 

processes are recognized as one of the most often applied technologies in wastewater 

treatment, this study assesses the impacts of select toxic synthetic organic compounds 

(SOCs) on the activated sludge communities in two types of wastewater treatment 

reactors: a completely-mixed activated sludge reactor (CMAS) and a sequencing batch 

reactor (SBR).  Commonly applied activated sludge monitoring parameters, such as 

solids analysis and substrate removal, are collected and correlated to the results of 

microscopic image analysis (IA) and direct gradient gel electrophoresis (DGGE) to 
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monitor the response of the activated sludge communities to variations in operational 

conditions, including the incorporation of SOCs in the influent feed and varying the 

solids retention time.     

 The results of this research indicate that the response of the activated community 

is highly dependent on the reactor configuration.  The CMAS settling performance was 

more strongly correlated to the shape parameters, and the SBR settling performance was 

more strongly correlated to the size parameters, which is qualitatively supported by 

particle settling theory when considering that SBR flocs were found to be larger than the 

CMAS flocs.  The SBR began to exhibit larger floc sizes and had a higher sludge volume 

index with the incorporation of SOCs, while the CMAS flocs became more spherical 

after SOCs were incorporated and exhibited more discrete settling.  The molecular 

analysis results revealed that the community structure within the activated sludge system 

was transient in response to environmental variations.   Banding patterns indicated that 

samples were more similar to other samples taken from the same reactor under the same 

operational conditions.  Thus, as operational conditions were varied, sample banding 

patterns would also change, indicating transitions in the genetic composition, and 

ultimately the dominant species present, in response to environmental changes. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation 

Advancements in environmental monitoring and assessment technologies allow 

for the quantification of specific contaminants with increasing sensitivity and accuracy.  

Furthermore, the impacts of toxic synthetic organic compounds (SOCs) are becoming a 

high priority for regulatory agencies in terms of monitoring and control.  For these 

reasons, environmental laws and permits are being mandated with limits on effluent 

concentrations set at very low quantities for specific organic constituents.  Due to 

increasing detection capabilities and more stringent effluent standards, the demand arises 

for a more complete understanding of how these SOCs affect the microbial population 

dynamics and the capability of SOC removal within an activated sludge (AS) reactor.   

 For several decades, models have been developed and utilized to predict the 

degradation of oxygen-demanding materials and nutrient removal.  However, these 

models currently do not accurately account for the inhibitory nature of toxic organic 

waste on the bioprocesses and degradation pathways in the AS system.  The problem 

arises in that the models typically lump all degradable organic matter into the 

biochemical oxygen demand (BOD), while many of the SOCs are only degradable by 

portions of the population (Magbanua et al., 1994; Magbanua et al., 1998). 
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 Even in models that incorporate inhibitory parameters, such as the Andrews 

Model (1968), there will be discrepancies between predicted and measured values due to 

biodegradation of the SOCs by only a fraction of the biomass community that actually 

degrades target SOCs (Magbanua et al., 1998).  A better understanding of the effects that 

certain SOCs have on the biological system can potentially provide an opportunity for 

more precise prediction of the biodegradation of these organic chemicals through the AS 

treatment process.  

 

1.2 Research Goals and Questions 

 The main goals of this study are to utilize microscopic image analysis coupled 

with molecular biology techniques in order to assess the variations of the activated sludge 

community when it is subjected to toxic SOCs in the influent feed.  The study will 

attempt to develop a more complete understanding of the effects that SOCs have on the 

microbial population in an AS system through answering the following: 

 How does the genetic makeup of the microbial population change as influent 

SOC concentrations and reactor design parameters are varied?  What are the 

impacts of these microbial variations on the process performance? 

 How does the diversity of the population fluctuate with changing influent 

conditions and reactor regimes?  What relationships can be developed between 

the varying diversity and the AS system performance? 

 How do the variations in SOC concentrations and design parameters affect the 

floc size and floc size distribution in the AS system?  How do these changes 

affect the overall treatment capabilities? 
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 Can the resulting variations in microbial diversity and floc size and size 

distribution be quantitatively related?  What insights can be obtained from the 

resulting variations in relation to bioprocess uncertainty?   

 

1.3 Research Hypothesis 

The overall diversity of the microbial community and the floc sizes and size 

distribution all play an important role in the AS system’s ability to treat SOCs in 

wastewater.  Through understanding the significance of these parameters, the uncertainty 

associated with SOC treatment could be minimized and more economical treatment 

strategies could be implemented. 
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CHAPTER II 
 

LITERATURE REVIEW 

 

2.1 Synthetic Organic Compounds 

 Synthetic organic compounds (SOCs) are becoming more prevalent in industrial 

waste streams, especially those emanating from the chemical manufacturing and 

pharmaceutical industries.  Regulatory agencies, such as the Environmental Protection 

Agency (USEPA), recognize the potential hazards of these pollutants and have begun 

limiting the concentrations of specific chemicals in waste streams.  The USEPA (1979a) 

has developed a priority pollutant list of 129 contaminants, of which 115 are SOCs.  

Table 2.1 provides a list of the synthetic organic priority pollutants, as defined by the 

USEPA, and recognized as a significant threat to public health and the environment.   

 Some SOCs have been detected in surface waters and WWTP effluents in the 

ng·L-1 to µg·L-1 range (Kümmerer, 2004).  Because the techniques for quantifying SOCs 

have become accurate at such low concentrations, regulations are being imposed on the 

levels of specific SOCs in waste streams that must be met.  Although they are often found 

at very low concentrations, many SOCs impose a significant risk to the environment and 

to public health.  SOCs refer to any organic compound that is industrially synthesized, 

and as such they are an extremely diverse group of chemicals.  Figure 2.1 presents a 

general classification according to volatility and polarity (Crittenden et al., 2005).  
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Source: USEPA, 1979a. 

Table 2.1 

Synthetic organic priority pollutants. 

Acenaphthene 1,2-trans-Dichloroethylene 2,4-Dinitrophenol Vinyl Chloride

Acrolein 2,4-Dichlorophenol 4,6-Dinitro-o-cresol Aldrin

Acrylonitrile 1,2-Dichloropropane N-Nitrosodimethylamine Dieldrin

Benzene 1,3-Dichloropropene (trans) N-Nitrosodiphenylamine Chlordane

Benzidine 2,4-Dimethylphenol N-Nitrosodi-n-propyl-amine 4,4-DDT 

Carbon Tetrachloride 2,4-Dinitrotoluene Pentachlorophenol 4,4-DDE

Chlorobenzene 2,6-Dinitrotoluene Phenol 4,4-DDD 

1,2,4-Trichlorobenzene 1,2-Diphenylhydrazine Bis (2-ethylhexyl) Phthalate alpha-Endosulfan

Hexachlorobenzene Ethylbenzene Butyl benzyl phthalate beta-Endosulfan

1,2-Dichloroethane Fluoranthene Di-n-butyl phthalate Endosulfan sulfate

1,1,1-Trichloroethane 4-Chlorophenyl phenyl ether Di-n-octyl phthalate Endrin

Hexachloroethane 4-Bromophenyl phenyl ether Diethyl phthalate Endrin aldehyde

1,1-Dichloroethane Bis (2-chloroisopropyl) ether Dimethyl phthalate Heptachlor

1,1,2-Trichloroethane Bis (2-chloroethoxy) methane Benzo[a]anthracene Heptachlor epoxide

1,1,2,2-Tetrachloroethane Methylene Chloride Benzo[a]pyrene alpha-BHC 

Chloroethane Methyl chloride 3,4-Benzofluoranthene beta-BHC

Bis(chloromethyl) ether Methyl Bromide Benzo[k]fluoranthene gamma-BHC 

Bis(2-chloroethyl) ether Bromoform Chrysene delta-BHC

2-Chloroethyl vinyl ether Dichlorobromomethane Acenaphthylene PCB-1242 

2-Chloronaphthalene Trichlorofluoromethane Anthracene PCB-1254 

2,4,6-Trichlorophenol Dichlorodifluoromethane Benzo[g,h,i]perylene PCB-1221 

p-Chloro-m-cresol Chlorodibromomethane Fluorene PCB-1232 

Chloroform Hexachlorobutadiene Phenanthrene PCB-1248 

2-Chlorophenol Hexachlorocyclopentadiene Dibenzo[a,h]anthracene PCB-1260 

1,2-Dichlorobenzene Isophorone Indeno[1,2,3-c,d]pyrene PCB-1016 

1,3-Dichlorobenzene Naphthalene Pyrene Toxaphene

1,4-Dichlorobenzene Nitrobenzene Tetrachloroethylene Asbestos 

3,3-Dichlorobenzidine 2-Nitrophenol Toluene 2,3,7,8- (TCDD)

1,1-Dichloroethylene 4-Nitrophenol Trichloroethylene
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Figure 2.1  Schematic classification of SOCs found in water (Adapted from 
 Crittenden et al., 2005). 
 
 
 
2.1.1 Important Physicochemical Properties of SOCs 

 In order to accurately assess the fate of specific organic chemicals, whether within 

a treatment process or in the transfer phenomena in the environment, several important 

properties must be determined and understood.  When studying SOCs, problems arise in 

that the list of priority pollutants is highly diverse, and each specific chemical will likely 

have unique properties associated with its transport and degradation (Kümmerer, 2004).  

The problem is compounded further because these chemicals are designed with inherent 

activities.  This is especially true of pesticides which are specifically developed to be 

toxic to the target organisms (Schnoor, 1992) and in the case of pharmaceuticals which 
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are designed for therapeutic purposes such as antibiotics, analgesics, and anti-

inflammatory agents (Kümmerer, 2004).  Since more stringent regulations are being 

imposed on specific chemicals, it is important to determine which properties of a given 

contaminant will have a significant impact on the ultimate environmental fate of that 

chemical.  Equilibrium distribution of chemicals into different environmental 

compartments is one of the common methods used in determining expected behavior 

patterns of specific chemicals in the environment (Bloemen & Burn, 1993).  According to 

Klimiuk and Kulikowska (2004), the removal efficiency of individual SOCs as it relates 

to AS treatment is highly diverse and mainly depends on the physicochemical properties 

of the compounds, especially their solubility, vapor pressure, partitioning between phases 

and polarity.   

  

2.1.1.1 Henry’s Law Coefficient 

 Many SOCs express high volatility which allow for the chemicals to be directly 

stripped into the atmosphere and escape further treatment.  Therefore, it is important to 

determine the partitioning between the air-water phases for a given chemical that is 

undergoing treatment.  Henry’s law constant is a physical property of a specific chemical 

that characterizes its partitioning in an air-water binary system at equilibrium (Bloemen 

& Burn, 1993).  Henry’s law states that under equilibrium conditions, the partial pressure 

of a gas above a liquid is proportional to the chemical concentration in the liquid: 

 LLag CHP   
(2-1)

  

where, Pg = partial pressure of the gas [atm]; CL = concentration of chemical in liquid 

[mol·L-3]; HLa
 = Henry’s constant [(atm·L3)·mol-1] (LaGrega et al., 2001).  Henry’s law 
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constants are necessary in order to predict how organic chemicals will behave in the 

environment and to assess the environmental risks caused by the chemicals.  Generally, 

higher Henry’s law constants suggest that chemicals are likely to move into the gas phase 

while lower constants suggest they will remain in solution (Bloemen & Burn, 1993). 

 

2.1.1.2 Octanol-Water Distribution Coefficient 

 The octanol-water distribution coefficient is another phase partitioning coefficient 

that is important in monitoring the transport of chemicals in the environment.  It 

represents the equilibrium concentration ratio of a specific chemical between n-octanol 

and water as given by: 

 w

o
ow C

C
K 

 
(2-2) 

where, Co = concentration of chemical in n-octanol; Cw = concentration of chemical in 

water; Kow = dimensionless octanol-water distribution coefficient (Bloemen & Burn, 

1993).  This ratio gives an indication of a specific chemical’s accumulation behavior and 

also is used to estimate other parameters, such as solubility, adsorption coefficients, and 

bioconcentration factors (Kümmerer, 2004).  Kümmerer further suggests that the octanol-

water distribution coefficient gives an indication of an organic chemical’s tendency to 

partition into lipids, sorb to particulates or biomass, and distribute among the different 

environmental compartments.  Typically, chemicals with higher Kow values will be more 

hydrophobic and sorb to organic particulates, lipids, and soil particles, while lower Kow 

values indicate that a chemical will be more hydrophilic and will generally remain in the 

aqueous phase (LaGrega et al., 2001).   
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2.1.1.3 Sludge Sorption-Desorption Coefficient 

 The sludge sorption-desorption coefficient is similar to the octanol-water 

coefficient in relating the equilibrium concentration between liquid phase and solid 

phase, but in this case the solid phase is biomass or sludge.  This is an important factor in 

discussing SOCs because many organic chemicals are treated by biological wastewater 

treatment plants (Kümmerer. 2004).  The sorption process can be a controlling factor in 

the removal of organic pollutants through biological wastewater treatment, and may 

influence the biodegradation rates within the treatment process (Carballa et al., 2008).  

Simply stated, the biomass sorption coefficient (Kbiomass) is given by: 

 w

biomass
biomass C

C
K 

 
(2-3) 

where, Cbiomass = concentration of chemical sorbed to the biomass.  However, Kümmerer 

(2004) suggests that although this coefficient can be approximated through studies with 

typical biomass concentrations, it more often estimated from the octanol-water 

coefficient or the organic carbon-based coefficient Koc.   Carballa et al. (2008) found that 

Kow and Koc based approaches work sufficiently for simple hydrophobic interactions, but 

they are significantly inaccurate when used to describe polar and ionic compounds.  Due 

to the inherent diversity among the physicochemical properties of SOCs, it may be 

necessary to determine the specific chemicals being treated and conduct appropriate 

studies to determine a better estimate of the ratio being sorbed to biomass.  The sorbtion 

dynamics have also been found to be greatly influenced by environmental conditions, 

such as temperature, pH, particle size distribution, salinity, and solids concentration 

(LaGrega et al., 2001). 
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2.1.2 Biological Treatment of SOCs  

Large amounts of SOCs are typically recalcitrant to biodegradation, but specific 

reactor regimes and operational strategies are actually capable of reliably removing many 

of the SOC contaminants (Hu et al., 2005).  Advanced oxidation processes (AOPs), such 

as the Fenton oxidation, have been the subject of numerous studies on the degradation 

and mineralization of recalcitrant organics.  Also, more advanced techniques including 

the photofenton process under UV-vis irradiation have been used to treat SOC-containing 

waste (Jeong & Yoon, 2004).  Biological treatment, however, is more efficient in many 

cases and results in more economical, onsite treatment, as opposed to physical treatment 

which utilizes separate evaporation and filtration steps or to chemical treatment which 

often demands strong and expensive oxidizers (Håkansson et al., 2005).  Other 

researchers indicate that, even when using biological treatment, mixed cultures are often 

required to degrade toxic materials, and independent degradation pathways may require 

reactor conditions that are not desirable to other organisms in the culture, often resulting 

in arranging sequential bioreactors (Campos et al., 2003; Perron & Welander, 2004).  The 

principal removal mechanisms of SOCs in typical biological treatment systems include 

sorption onto the AS sludge, volatilization, stripping due to forced air injection, and 

biodegradation (Klimiuk & Kulikowska, 2004).  Although biological treatment is 

recognized by USEPA as the most effective treatment option for SOC-containing waste, 

the modeling approaches currently implemented have significant uncertainty associated 

with them (Magbanua et al., 2004).  In order to assure compliance, however, most 

treatment processes are engineered with larger, less economical safety factors to account 

for the process uncertainty associated with SOC removal.     
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2.2 The Activated Sludge Process 

 The activated sludge process is a biological wastewater treatment process that is 

generally comprised of three basic components (Metcalf & Eddy, 2003):  

 An aeration basin for suspending the microorganisms and supplying oxygen 

 A separation phase in which the solids and liquids are separated 

 A recycle system to maintain a desired activated sludge population 

Figure 2.2 provides a simple schematic for the typical AS process using different types of 

reactors.  Within the AS treatment process, the active microorganisms that are used to 

treat the wastewater are commonly referred to as activated sludge flocs, due to their 

inherent tendencies to bind together through extracellular networks.  Dissolved waste 

contaminants and other constituents that cannot be removed by physical means must be 

biologically converted so that they can be removed from the waste stream.  It has been 

estimated that roughly two-thirds of the influent organic substrate is incorporated into 

cellular material and one-third is utilized as energy for cell synthesis and maintenance 

(Bisogni et al., 1971). 
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Figure 2.2  Typical activated sludge reactor configurations: (a) Completely mixed 
activated sludge (CMAS) process, (b) plug- flow process, and (c) 
sequencing batch reactor (SBR) process.  (From Metcalf & Eddy, 2003). 
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2.2.1 Activated Sludge Flocs 

Activated sludge flocs are comprised of intricate matrices of microorganisms, 

extracellular polymers, organic and inorganic molecules, incorporated substrate, and 

biological waste material (Wilén et al., 2003).  The physical, chemical, and 

morphological compositions of an AS floc are each heavily influenced by environmental 

conditions (Jin et al., 2004).  These environmental factors include, but are not limited to, 

the dissolved oxygen level, the type and quantity of substrate provided, temperature, pH, 

reactor configuration, and the velocity gradient within the reactor (Alagappan & Cowen, 

2001; Jin et al., 2004; Kilander et al., 2006).  The interactions between the operating 

conditions of a treatment reactor, the physiological state of the biomass, and the sludge 

characteristics within the reactor are complex (Massé et al., 2006), and the 

physicochemical characteristics of the AS floc will influence many aspects of the 

biological treatment process including: “substrate transfer and utilization, floc formation 

and breakup, supernatant filtration, biosolids thickening via sedimentation and/or 

floatation, and biosolids dewatering” (Guan et al., 1998). 

The specific materials that make up the sludge flocs, as well as the surface 

phenomena that they invoke, have been investigated for decades and are still the focus of 

numerous studies on the AS process.   Variations in the AS floc ultimately affect the 

overall performance of the reactor because they influence both the kinetics of the 

microbial community (Grady et al., 1996) and the flocculation properties of the sludge 

(Wilén et al., 2003).  The performance of the clarifier or sedimentation basin is essential 

to maintaining an effective AS sludge plant with suitable effluent quality, which must 

meet increasingly stringent standards (Grijspeerdt & Verstraete, 1997).  The clarifier 
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efficiency is highly dependent on the nature and settling characteristics of the sludge (Jin 

et al., 2004).  Although the precise reason for variations in settling characteristics is yet 

unknown, it is believed that they are most likely a result of changes in the nutritional 

balance of the system and the dominant microbial population (Forster, 1985a; Goodwin 

& Forster, 1985; Lovett et al., 1983).   

A main focus of current and past research studies investigate the composition of 

the extracellular polymeric substances (EPS) and seek to understand the role of EPS in 

gravity separation of the AS floc (Sponza, 2004).  The EPS constitutes 50-60% of the 

organic fraction of AS and is a complex matrix mainly composed of excreted polymers, 

lysis and hydrolysis products, and adsorbed organic matter (Wilén et al., 2003).  The EPS 

also incorporates ionogenic biopolymers (Morgan et al., 1990) and polyvalent metal ions 

(Forster, 1985b) which contribute to the surface charges of the flocs.  Earlier studies 

concluded that surface charges do not necessarily have to be suppressed in order to 

flocculate and indicated that electrostatic forces are important to AS floc stability (Liao et 

al., 2001).  Other studies indicated a strong correlation between the hydrophobicity of the 

cell surface and the adhesion to the AS floc (Zita & Hermansson, 1997).  Although the 

exact role of the EPS is not completely understood, it is accepted that the composition of 

the EPS, along with other surface properties including surface charge and 

hydrophobicity, govern the settleability of the sludge and are important in controlling the 

sludge volume index (SVI) (Jin et al., 2004; Sponza, 2004; Zita & Hermansson, 1997).  
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2.2.2 Activated Sludge Reactor Parameters 

 Several characteristics and measureable parameters of the AS treatment reactor 

can be used to gage the performance of the reactor.  Through the quantification of key 

reactor parameters, the treatment efficiency can be monitored for the AS system.  Current 

modeling approaches allow for simulation of the AS system performance once specific 

parameters are determined (Afonso & Cunha, 2002).  Reactor parameters can also be 

correlated to other parameters in order to study the effects that variations in the 

operational strategies will have on the AS system.   

 

2.2.2.1 Solids Analysis 

The solids concentration is a key component of the treatment system that can be 

used to approximate the amount of biomass in the reactor.  As indicated in Figure 2.3, the 

total solids within a reactor can be subdivided into several categories based on their 

susceptibility to physical separation and to volatilization.  The specific techniques for 

completing the solids analysis are detailed in the standard methods (APHA et al., 2005); 

however, a brief overview of the process is provided here.  The total solids account for all 

solids that remain after all moisture from the sample is evaporated off.  The wet sample 

can also be subjected to a filter process that separates the suspended solids – those that 

are retained on the filter pad, from the dissolved solids – those that pass through the filter.  

The solids can be further separated by utilizing a furnace which heats the samples to 

550°C and burns off all volatile components, leaving mainly inorganic byproducts.  

Results from the solids analysis are used in several other calculations that assess and/or 
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control reactor performance, including the sludge volume index and the solids retention 

time. 

 

 

Figure 2.3  Components of wastewater solids analysis. 

 

2.2.2.2 Sludge Volume Index  

The sludge volume index (SVI) gives a representation of the sludge’s ability to 

settle out during the clarification process.  The separation of the sludge from the effluent 

stream is vital to maintaining an acceptable effluent product and to returning activated 

sludge back to the reactor (Lee et al., 1983).  The SVI is determined first by settling the 

sludge for 30 minutes, often in a graduated cylinder or Imhoff cone, in order to determine 

the ratio of sludge volume to sample volume.  Then, the SVI [L3
sludge·M

-3
sludge] is 

calculated as follows: 

 
T

S

X

V
SVI   (2-4) 

where, Vs = volume of settled sludge per volume of sample [L3
sludge·L

-3
sample] and XT = 

total suspended solids [Msludge·L
-3] (APHA et al., 2005).  Activated sludge settling 

behavior has four stages- reflocculation, initial settling, transition, and compression, and 
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the time at which these stages may occur varies depending on the unique sludge 

properties (Lee et al., 1983).  Although it is preferred that the sludge be in the 

compression phase when the volume is recorded, often the sludge is still in transition at 

the 30 minute mark of the SVI test.  According to Lee et al. (1983), a diluted SVI (dSVI) 

can be conducted instead to assure that suspended solids concentration is not sufficiently 

high as to cause an artificial SVI boundary. 

 Several studies have been conducted to determine the correlation of SVI and other 

system parameters.  Also, variations in the SVI have been linked to the variations in floc 

properties of the AS system.  The morphology of the AS floc, specifically the increased 

irregularity of the floc shape, has been correlated to an increased SVI (Grijspeerdt & 

Verstraete, 1997).  Also, variations in solids retention time (SRT) have been shown to 

influence the SVI and the amount of suspended solids lost in the effluent (Liao et al., 

2006).  At lower SRTs, the flocs became more irregular and more variable with size 

which leads to a higher SVI.  However, other studies indicated that if the sludge age is 

plotted versus SVI, the relationship is highly dependent on the substrate being used, 

although good agreement was demonstrated for similar substrates (Lovett et al., 1983). 

 

2.2.2.3 Solids Retention Time 

 The solids retention time (SRT), also known as the mean cell residence time, is 

another key element used to assess and control reactor performance.  The SRT is 

calculated by performing a microorganism mass balance on the reactor, taking into 

account the influent, effluent, and any wastage streams.  The typical calculation for SRT 

[t-1] is:  
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eeww QXQX

VX
SRT


   (2-5) 

where, V = volume of the reactor [L3], X = volatile suspended solids [Mbiomass·L
-3], Q = 

volumetric flow rate [L3·t-1], and the subscripts w and e denote wastage stream and 

effluent stream, respectively (Metcalf & Eddy, 2003).  In the typical constant volume 

system, the flow rates can be adjusted accordingly to maintain a desired SRT.  The SRT 

is possibly the most critical parameter of an activated sludge wastewater treatment plant 

because it affects the overall treatment performance, including the amount of sludge 

produced and the oxygen requirements for the system (Metcalf & Eddy, 2003).  As 

mentioned in the preceding discussion on SVI, varying the SRT has been shown to 

directly affect the biomass characteristics and the SVI (Liao et al., 2006). 

 

2.2.2.4 Microbial Kinetics 

Knowledge of the microbial kinetics is essential in biological treatment via the AS 

process (Contreras et al., 2001).  Accurate modeling approaches for the AS process allow 

for predicting the effluent quality with reasonable certainty.  Initial attempts to model the 

AS process involved the use of reaction engineering techniques combined with microbial 

kinetics from the Monod (1949) microbial growth model which incorporates saturation 

kinetics:  

 

X
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SS
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(2-6) 

and, a linear biomass decay model: 

  Bd bXr 
 

(2-7) 
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where, rg = microbial growth rate [Mbiomass·L
-3·t-1], µ = specific growth rate [t-1], X = 

volatile suspended solids concentration [Mbiomass·L
-3], µm = maximum specific growth 

rate [t-1], SS = substrate concentration [Msubstrate·L
-3], KS = half-saturation constant 

[Msubstrate·L
-3], rd = microbial decay rate [Mbiomass·L

-3·t-1], and b = decay coefficient [t-1].   

The Monod-type kinetics have been utilized in numerous studies, as noted by Vavilin and 

Lokshina (1996) and Kovarova-Kovar and Elgi (1998).  Also, software packages have 

been developed to simulate AS biotreatment systems based on Monod kinetics in AS 

models developed, i.e. ASM 1 (Henze et al., 1987), ASM 2 (Henze et al., 1999), and 

ASM 3 (Gujer et al., 1999).  These modeling approaches consider the hydrolysis of 

particulate/polymeric substrate into soluble substrate and are commonly applied to 

predict the biodegradation of organic substrate (Nakhla et al., 2006). 

 Although these modeling techniques allow for fairly accurate prediction for 

biogenic substrate removal, SOCs incorporated in the waste stream can lead to inaccurate 

results.  Since it is recognized that many SOCs inhibit their own biodegradation, the 

Andrews (1968) model is one approach that has been applied to account for the inhibitory 

nature of SOCs (Vavilin & Lokshina, 1996).  In this case, an inhibition coefficient, KI, is 

introduced into the microbial growth model: 
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(2-8) 

 The Andrews model has been widely used to model high strength inhibitory 

wastewaters (Nakhla et al., 2006).  In many cases, however, the typical approaches using 

either the Monod or Andrews model when applied to SOC-containing wastewaters would 

lead to inaccurate or non-conservative results (Alagappan & Cowan, 2001).  Alagappan 
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and Cowan note the example of solvents which are known to be toxic and can cause 

microbial cell death at levels below their solubility limits.  In the case of these solvents, 

there is the potential for inhibition of microbial activity, even for the biomass associated 

with the degradation of the inhibitory contaminants.   

Accurate estimation of the kinetic parameters incorporated in the correct model 

structure will allow for predicting the fate of SOCs through the AS process with less 

uncertainty and more reliable results.  Estimating the kinetics of biodegradation can be 

accomplished through a number of research techniques (Contreras et al., 2001).  Accurate 

estimates, however, are necessary in order to accurately model SOC removal in an AS 

system.  The method of determining kinetic parameters, specifically in modeling SOC 

removal, directly affects the prediction capabilities of the model used (Magbanua et al., 

2003).  Variability in the kinetic parameter estimates also stem from a number of inherent 

factors of the microbial community.  The physiological state and microbial diversity 

within a culture are found to directly affect the kinetic parameters that describe the AS 

community (Grady et al., 1996).  Following this logic, relationships could potentially be 

found between the microbial diversity and the kinetic parameters of the community. 

In order to estimate the kinetic parameters of an AS system, a mass balance can 

be applied to the reactor for both biomass growth and substrate utilization.  The typical 

mass balance could be written as follows: 

 Accumulation = Mass In – Mass Out + Generation (2-9) 

For the biomass mass balance, substitution of the appropriate terms yields: 
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(2-10) 
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For the substrate mass balance, substitution of the appropriate terms yields: 

 adsvolbiowweeoo
s rrrSQSQSQ

dt
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(2-11) 

where rbio is the rate of biodegradation, rvol is the rate of volatilization, and rads is the rate 

of adsorption, each with units of [Msubstrate·t
-1].   The rate of biodegradation, rbio, can be 

related to the Monod growth rate, rg, by multiplying rg by the inverse of the true growth 

yield, Y: 

 

Vr
Y

r gbio

1


 

(2-12) 

where the units of Y are Mbiomass·Msubstrate
-1 and recognizing that the negative sign is 

already incorporated into the mass balance presented in Eq. 2-11.  The rate of 

volatilization and the rate of adsorption can often be neglected for typical wastewater 

constituents. However, when attempting to estimate volatile SOC kinetic parameters, it is 

important to estimate the contribution of these mechanisms to the overall removal of the 

substrate (Grady et al., 1997; Hsieh, 2000).  Additionally, an approximation of the 

competent biomass actively involved in the SOC degradation is important to develop 

more accurate estimates of kinetic parameters (Magbanua et al., 1998).   

Partitioning of SOCs into multiple phases in the AS reactor affects the available 

concentration for biodegradation by the biomass and not accounting for the portions of 

substrate removed via abiotic processes will lead to inaccurate, non-conservative 

estimates of the ability of the biomass to degrade the substrate of interest.  The rate of 

volatilization is indicative of the mass transfer of SOCs into the rising air bubbles, which 

is often referred to as a stripping rate.  The mass transfer equation for stripping of an SOC 

is often presented similar to that of Chao et al. (2008) as: 
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(2-13) 

where KLa is the mass transfer coefficient [t-1] and S* is the bulk gas-phase concentration 

[Msubstate·L
-3], which is often assumed to be zero in the case of SOCs.  This results in a 

first-order equation to account for the removal of SOCs by volatilization (Grady et al., 

1997).  KLa for SOCs can be related to the KLa for oxygen transfer based on the ratio of 

diffusion coefficients (Bielefeldt & Stensel, 1999): 
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(2-14) 

where DSOC and DO2 are the diffusion coefficient of the SOC and oxygen, respectively,  

in water [L2·t-1] and n is a constant which is based on the type of aeration system used.  

The constant is typically assumed to be 0.5 for mechanical surface aerators and 1 for 

diffused air systems. 

 Adsorption of the substrate to the biomass in the system is also a method of 

removal when the solids are wasted from the reactor or they escape in the effluent.  In the 

same manner as stripping of SOCs, neglecting the contribution of this removal 

mechanism can potentially lead to a non-conservative estimate of the biodegradation 

capabilities of the biomass.  The rate of adsorption for a steady-state CMAS is a function 

of the waste flow rate, the biomass concentration and the amount of SOC sorbed to the 

biomass at equilibrium (Grady et al., 1997; Hsieh, 2000): 

 SkXQr pwwads 
 

(2-15) 

where kp is the partition coefficient [L3·Mbiomass
-1].  The partition coefficient can be 

approximated based on the octanol-water coefficient, Kow, and the fraction of organic 
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carbon in the solids, foc, which is approximated to be 0.53 for biological cells (Hsieh, 

2000): 

 owocp Kfk )103.6( 7
 

(2-16) 

Utilizing these mass balance terms and making certain assumptions regarding a CMAS, 

such as constant volume and steady-state performance, kinetic parameters can be 

approximated from experimental time-concentration data.  It should be noted that 

although the principles of this analysis can be applied to batch systems, due to the 

sequential nature of SBRs, the differential equations over the react period often cannot be 

simplified using steady-state assumptions.  

 

2.2.2.5 Floc Size and Size Distribution 

 Knowledge of the floc size and size distribution is an essential part of 

understanding the AS process.  Insight in to the particle size distribution of an activated 

sludge system has been shown to be a cornerstone in studying flocculation and 

sedimentation, substrate transfer and utilization, gravity separation and thickening of 

sludge, and in the mathematical modeling of the AS process (Li & Ganczarczyk, 1991).  

Determining the size of a particle with a homogenous, regular shape only requires a 

single dimension, such as the diameter of a sphere or the side of a cube; however, in 

practice particles are often irregular and have an infinite number of linear dimensions 

(Allen, 1997).  Therefore, relevant shape factors or size equivalents are required to 

compare irregular particles.  Grijspeerdt and Verstraete (1997) selected several important 

parameters to compare different flocs.  For correlating the size of the flocs, the authors 

used the equivalent circle diameter (De), calculated from the projected area: 
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 
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(2-17) 

 Other parameters that the authors implemented were used to attempt to relate the 

shape of flocs to their settling properties.  These parameters included: 

 The form factor (FF) determines the shape of the object boundary relative to a 

circle, which would have a FF of one: 
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(2-18) 

 The aspect ratio (AR) determines how elongated an object is along the major 

axis.  Again, a circle will have an AR of one: 
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 The roundness (RD) is another parameter that relates the elongation of the 

particle to that of a circle.  In this case, RD ranges from 0 to 1, where one 

indicates a circle: 
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The authors assert that these parameters were verified to be reproducible, provided that 

the biomass concentration remains between 0.5 and 4 g·L-1. 

 Along with some of the parameters used by Grijspeerdt and Verstraete, Contreras 

et al. (2004) also utilized the reduced radius of gyration (Rg) as a comparative parameter 

for the AS flocs: 
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where, Mx2 and My2 are the central second moments with respect to the x-axis and y-axis 

of the image, respectively.  Rg equals 0.707 for a circle and it decreases the more an 

object is elongated.   In terms of a pixilated computer image, Mx2 and My2 are calculated 

as follows: 
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where, (xi,yi) is the position of each pixel that belongs to the analyzed particle and N is 

the number of pixels in the particle.  Other research has indicated that Rg can be directly 

related to both the mass and density of microbial flocs (Guan et al., 1998). 

 Once relevant particle sizes have been defined, the frequency of occurrence of 

each size can be determined by microscopy, electrical and light sensing zone methods, 

surface distributions by photo-sedimentation and mass distributions by sieving and x-ray 

sedimentation (Allen, 1997).  To graphically present the frequency distribution, the 

relationship between size and frequency may be written: 
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Li and Ganczarczyk (1991) suggest that although frequency of occurrence, number 

concentration, or count are traditionally used to give size distributions, they may also be 
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expressed as surface area, volume, and mass.  The authors also claim that when studying 

the AS process the latter distributions are often of equal or greater importance. 

 

2.3 Research Techniques 

 Several advanced research techniques will be required during this study.  This 

study will incorporate molecular methods to assess bacterial diversity and variations 

throughout the time of the research.  It will also incorporate microscopic image analysis 

to investigate any changes in the flocculation characteristics of the activated sludge flocs.  

Another aspect of this study will be to quantify the effluent contaminants at extremely 

low levels which will incorporate gas chromatography.  Each of these separate research 

methods were reviewed prior to conducting the study. 

 

2.3.1 Molecular Methods 

 Molecular techniques were investigated to determine which methods would be 

utilized to characterize the genetic makeup of the microbial community being studied.  

These methods typically include three key steps:  nucleic acid extraction, amplification 

via polymerase chain reactions (PCR), and analysis of the diversity of the amplified 

molecules through either genetic fingerprinting or sequencing (Widada et al., 2002).  

Numerous molecular studies have been conducted on environmental samples in order to 

determine which microorganisms are dominant in the system and to monitor changes in 

the system in response to environmental variations.   DNA analysis is an increasingly 

reliable method for monitoring the diversity of microbial communities.  A DNA strand 

will denature to a certain extent as determined by its specific nucleotide sequence 
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composition.  DNA fingerprints can be compared between different communities to 

determine the microbial diversity present (Nakatsu et al., 2000).   

 One method used to directly determine the genetic diversity of complex microbial 

populations is to use denaturing gradient gel electrophoresis (DGGE).  Muyzer et al. 

(1993) present an approach in which DGGE is used to analyze the structure and species 

composition of microbial communities.  In their study, PCR was used to amplify rDNA, 

and DGGE separated the PCR amplicons based on the electrophoretic mobility of a 

partially melted DNA molecule in polyacrylamide gels with a linearly increasing gradient 

of denaturants.  Denaturants used in the polyacrylamide gel are urea and formamide.  A 

100% denaturant solution consists of 7 M urea and 40% formamide in water.  In order to 

obtain a gradient, a lower denaturant solution and a higher denaturant solution are 

prepared and are poured using a gradient former.  DGGE separates PCR amplicons of the 

same size based on their specific sequences because different sequences can be separated 

according to differential denaturation, or melting, profiles (Ercolini, 2004).  DGGE bands 

can be revealed through traditional staining techniques including ethidium bromide 

(Gillan et al., 1998; Xia et al., 2005).  More advanced staining procedures allow for more 

sensitive detection of low concentrations of DNA fragments, examples include silver 

staining (Felske et al., 1996), SYBR Green staining (Henckel et al., 2000), and SYBR 

Gold staining (Watanabe et al., 2001).  Cost is often a prohibitive factor in utilizing more 

advanced stains over ethidium bromide, while toxicity considerations favor some of the 

more expensive stains.  The resulting DGGE fingerprint provides a series of bands that 

are relative to the microbial species present in the sample.  To carry the process further, 

identification of the species can be accomplished by excising, purifying, and sequencing 
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the individual bands from DGGE profile (Ercolini, 2004).  Figure 2.4 presents a flow 

chart for the molecular approaches used to directly monitor the microbial diversity of an 

environmental sample. 

  It has also been noted from studies that bacterial populations found in the 

environment are much more diverse than those isolated in laboratory work, and many 

microorganisms that are responsible for SOC biodegradation in natural environments 

have not been isolated in the laboratory yet (Watanabe et al., 1998).  Direct extraction of 

DNA from an environmental sample has been shown to account for greater than 90% of 

the microorganisms present, which are not readily cultured in the laboratory, but may be 

responsible for the majority of the biodegradation activity of interest (Widada et al., 

2002).  The newer approach of DNA extraction from an environmental sample provides a 

better characterization of the microbial population because it does not carry the selective 

inhibition of the synthetic media used in more conventional culture methods (Amann et 

al., 1995).     
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Figure 2.4 Flow diagram of the application of PCR-DGGE to an environmental 
 sample (Ercolini, 2004). 
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 Although the approach has proved successful in multiple environments, extraction 

from AS systems has the added difficulty of disrupting bacterial cells regardless of the 

biochemical composition or their localization within the AS floc (Bourrain et al., 1999).  

The DNA extraction technique itself may introduce bias when it is applied to a mixed 

culture where the same extraction efficiency is difficult to achieve across all species 

(Ercolini, 2004).  Bourrain et al.(1999) further suggest that the extraction procedure must 

be optimized to efficiently release the nucleic acids from complex microbial 

environments, and the extraction efficiency determines the quantity, quality, and diversity 

of the extracted nucleic acids.  Therefore, optimization of the DNA extraction procedure 

is essential in order to assess the microbial diversity of the AS floc.     

 The extracted nucleic acids must also be compatible with PCR and other 

downstream processes.  Studies also suggest that the PCR process itself can also 

introduce bias in the community analysis procedure.  PCR amplification has resulted in 

differential or preferential amplification of rDNA genes, which may be a result of 

reannealing of the template DNA (Reysenbach et al., 1992; Suzuki & Giovannoni, 1996).  

Ribosomal DNA (rDNA) is most often targeted for PCR amplification because it is a 

highly conserved region of the genome that also contains variable regions (Ercolini, 

2004).  For bacterial populations, the most commonly amplified regions for bacterial 

community analysis are the variable regions in the 16S rDNA (Ercolini, 2004; Muyzer et 

al., 1993; Muyzer, 1999).  Different bacterial species will have different base pair 

compositions within the variable regions of the 16S rDNA (Ercolini, 2004).   Table 2.2 

reports several of the primer sets found in the literature which are used to study 

environmental communities. 
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Table 2.2 

Primer sequences for environmental samples. 

  

   

Primera Sequenceb,c Positiond Environmental Source

fD1 AGA GTT TGA TCC TGG CTC AG 8-27

rD1 AAG GAG GTG ATC CAG CC 1524-1540

fU1
TGA CTG ACT GAG TGC CAG 
CMG CCG CGG 515-541f

rU1
TGA CTG ACT GAG AGC TCT 
ACC TTG TTA CGM YTT 1477-1509f

27F AGA GTT TGA TCA TGG CTC AG 8-27

1492R GGT ACC TTG TTA CGA CTT 1492-1509

GM5Fe CCT ACG GGA GGC AGC AG 341-357

518R ATT ACC GCG GCT GCT GG 518-534

fU2 ATG GCT GTC GTC AGC T 1055-1070

rU2e ACG GGC GGT GTG TAC 1392-1406

PRBA338Fe AC TCC TAC GGG AG CAG CAG 338-358

PRUN518R ATT ACC GCG GCT GCT GG 518-534

PRBA968Fe AA CGC GAA GAA CCT TAC 968-983

PRBA1406R ACG GGC GGT GTG TAC 1392-1406

fU3 TTC CGG TTG ATC CYG CCG GA 2-21

rU3 GGT TAC CTT GTT ACG ACT T 1492-1510

aPrimers not named in source are named fU for forward universal and rU for reverse universal.
bPrimers are orientated from the 5' to 3' end.
cM = A/C; Y = C/T.
dNumbering based on the 16S rRNA of E. coli.
eGC-clamp was attached to 5' end.
fPosition approximated from other given regions.

microbial mat from hot 
springs

biofilm; California 
estuaries; mixed 

microbial communities

Gillan et al., 1998; 
Murray et al., 1996; 
Muyzer et al., 1993

Ferris et al., 1996

Authors

 marine biofilm

activated sludge

soil, water samples, 
urine

Bourrain et al., 1999

Chaudhuri et al., 2006

Gillan et al., 1998

mixture of purified 
DNA

Reysenbach et al., 
1992

soil samples

soil samples

Nakatsu et al., 2000

Nakatsu et al., 2000
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 DGGE is considered the most commonly used culture-independent fingerprinting 

method when assessing diversity of complex microbial communities directly from 

environmental samples (Ercolini, 2004).  DGGE has been found to be a highly effective 

method for identifying microorganisms found in the environment that are difficult to 

isolate in cultures (Watts et al., 2001).  Watts et al. (2001) further conclude that DGGE 

provides a means to rapidly screen for the absence or presence of selected species in 

response to changes in environmental conditions.  DGGE coupled with the appropriate 

PCR primer set is also capable of assessing the diversity of specific catabolic genes.  

Henckel et al. (2000) utilized this technique in a study to assess the diversity of specific 

methanotrophic populations in soil.  Similar techniques have been applied to assess SOC-

specific catabolic gene diversity, including organisms that actively degrade BTEX in 

contaminated soils (Junca & Pieper, 2003; Junca & Pieper, 2004).  Several molecular 

methods are currently being applied to assess microbial community structure and to 

investigate the diversity of catabolic genes in environmental samples (Widada et al., 

2002).   

 Using these or similar techniques, several studies have investigated the microbial 

diversity of complex communities.  The techniques have been employed with success in 

both aquatic environments (Ferris et al., 1996; Lyautey et al., 2005) and soil communities 

(Nakatsu et al., 2000).  The specific environment under investigation typically dictates 

the precise method of nucleic acid extraction, however recent studies claim to have 

obtained a uniform method of DNA extraction from different types of environmental 

samples, both soil and water (Chaudhuri et al., 2006).  Once the DGGE rDNA profiles 

are obtained, the banding patterns are considered to be a genetic fingerprint of the whole 
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bacterial community, and the discrete bands are assumed to represent a unique bacterial 

population (Fromin et al., 2002).  Also, the intensities of specific bands are assumed to 

directly indicate the relative density of the corresponding bacteria with the given 

sequence (Murray et al., 1996).       

 Analysis of microbial community DNA profiles have been historically 

accomplished through visually investigating the variations in the gel images from sample 

to sample (Fromin et al., 2002).  These variations can include the appearance or 

disappearance of specific bands or changes in the intensities over time.  More recently, 

techniques have been developed, which utilize more sophisticated statistical approaches 

and incorporate image-analysis software.  Specific populations could also be identified by 

excising specific gel fractions and sequencing the rDNA (Xia et al., 2005).  The obtained 

sequences can be compared to available sequence libraries, which can potentially identify 

the species present by similarity comparisons.   

 Xia et al. also applied statistical analysis to calculate the Shannon biodiversity 

index, S:  

 

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where, Pi is the ratio of one specific group of bacteria to the total microorganisms in the 

sample, and N is the total number of microbial species in the samples.  Another technique 

used to statistically analyze the DGGE profile of multiple environmental samples was to 

use the pairwise similarity coefficient, Cs (Gillan et al., 1998).  This coefficient is 

calculated based on the similarities between two separate lanes on the DGGE gel: 
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where, a is the number of DGGE bands in one sample, b is the number of DGGE bands in 

another sample, and j is the number of common DGGE bands.  A Cs of 100% means that 

the two samples are identical and a Cs of 0% means that the two profiles are completely 

different.   

Although visual analysis has been successfully applied in numerous studies, Datta 

& Datta (2003) report that it is a labor intensive and highly subjective process.   The 

authors suggest that hierarchical clustering is an important tool commonly applied in the 

fields of genetics and molecular biology.  Eisen et al. (1998) report the use of pairwise 

average-linkage clustering analysis to develop relational trees, or dendrograms, that 

reflect the level of similarity between objects based on branch length.  Numerous 

clustering methods are available, but Datta & Datta (2003) suggest that using unweighted 

pair group method average (UPGMA) based on correlation distances to develop the 

hierarchical cluster is one of the simplest and most commonly applied techniques for 

assessing similarities between profiles.  In the UPGMA method, the ‘distances’ between 

clusters is taken as the average of the ‘distances’ between the points in each cluster (Datta 

and Datta, 2003).  This method can be applied based on any number of statistical 

coefficients used to generate the correlation distance between the points.   

Through the discussed analysis techniques, the microbial diversity should be able 

to be quantified and compared throughout the experimental period to determine the 

effects of SOCs on the diversity of the population. 
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2.3.2 Microscopic Image Analysis 

Another focus of the proposed research is to monitor the changes in the 

morphology of the microbial flocs throughout the process in relation to the operational 

strategy variations.  It is understood that AS flocs are made of a complex and 

heterogeneous composition, and the size and size distribution of the flocs will depend 

heavily on the environment, including influent composition (Jin et al., 2004).   It has also 

been shown that the floc size-density-structure relationship is vital to optimizing phase 

separation (Jorand et al., 1995).  Knowledge concerning the size and morphology of AS 

flocs leads to a better understanding of the AS process and to better control of the AS 

system (Li & Ganczarczyk, 1991).    

 Several technologies are currently available for analyzing floc size and 

morphology, which typically combine microscopic techniques, image-analysis software, 

and statistical methods.  Allen (1997) claims that a microscopic examination should 

always be used to conduct a particle size analysis.  Lopez et al. (2005) suggest that the 

images of AS flocs can be obtained using wide-field epifluorescence microscopy, 

confocal laser scanning microscopy (CLSM), or two-photon excitation laser scanning 

microscopy (TPE-LSM).  The images produced from these methods allow for varying 

degrees of quantitative analysis.  However, other authors suggest alternative approaches 

including phase contrast illumination systems (Contreras et al., 2004; Araya-Kroff et al., 

2004) or light-scattering detection devices, such as the Malvern Mastersizer, which are 

specifically developed for floc size analysis (Jin et al., 2004; Massé et al., 2006).  Guan et 

al. (1998) conclude that, with the scattering of light, information on the floc structure can 

be divulged from the variation of light intensity with the angle of scatter.  Araya-Kroff et 
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al. (2004) found that phase contrast microscopy can be an equally useful tool in floc 

image analysis.  In their study, phase contrast microscopy was coupled with specially 

developed software to allow quantitative monitoring of the dynamic changes of the AS 

flocs, which is similar to the goals of the current research project.   

  

2.3.2.1 Sample Preparation for Image Analysis 

Several steps must be taken to utilize microscopic image analysis to monitor the 

size and morphology of AS flocs.  Care must be taken during the initial sample 

preparation and handling in order to prevent undesired forces on the flocs from distorting 

the fragile floc morphology of larger flocs (Li & Ganczarczyk, 1991).  Care must also be 

exercised in the initial sample preparation because the measurement sample is so small in 

relation to the studied environment that it is difficult to make it representative of the bulk 

(Allen, 1997).  Research has suggested that any extraction of the particles from the 

system will influence the particle size distributions, and large shear forces will break up 

flocs (Kilander et al., 2006).  Although automatic, in-situ, non-intrusive measurements 

are ideal for investigating floc parameters, several studies make use of manual or 

automatic sampling and microscopy to study floc morphology (Araya-Kroff et al., 2004; 

Contreras et al., 2004; Grijspeerdt & Verstraete, 1997; Pons et al., 1993).  However, in 

the case of manual sampling, delicate manipulation is required.  Grijspeerdt and 

Verstraete (1997) suggest that the sample be sufficiently diluted to avoid saturation of the 

image and that the liquid layer must be thin enough to use high magnification.   The 

authors accomplished this by dispersing the sample into a petri dish and diluting it 5:1 

with effluent.  Contreras et al. (2004), however, placed 10 µl samples directly on 
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microscope slides.  Studies have concluded that determination of floc size and other 

morphological parameters are independent of the dilution of the sludge sample, provided 

the biomass concentration is between 0.5 and 4 g·L-1 (Grijspeerdt & Verstraete, 1997).  

This indicates that the major purpose of dilution is for visibility of the majority of flocs, 

and not to increase accuracy of individual measurements.  However, the authors do 

suggest that changing magnification will highly influence the measurements for a given 

sample, so all work that is to be compared must be conducted at a constant magnification.   

 

2.3.2.2 Microscopic Image Capture and Image Processing 

 When using microscopic techniques, images must be captured and saved in a 

mode compatible for further processing.  Typically, a video camera is mounted on the 

microscope, and the image is captured and digitized through a frame grabbing software 

program (Grijspeerdt & Verstraete, 1997; Pons et al., 1993).  In most cases, the 

microscope must be focused manually to determine the ‘best’ view of the flocs, since the 

three dimensional nature of the flocs makes it difficult to have the entire floc in focus at 

one time.  After saving the image, grid correction may be necessary depending on the 

aspect ratios of the camera, image capture software, and the computer pixels.  The grid 

correction is accomplished by using a scale slide to measure the field of view and relate it 

to the number of pixels in the image.  Further image processing is used to improve the 

image and make it more available to computer-automated measurements, but at the same 

time, try to maintain the accuracy of the image.   

The first step in further image processing is usually binarization in order to 

convert the grey-scale images to black and white images (Pons et al., 1993).  During the 
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binarization process, images are assigned a threshold value at which the floc particles are 

clearly separated from any background colors and pixels are reassigned a grey-level value 

of either zero (black) or one (white) (Grijspeerdt & Verstraete, 1997).  At this point, 

pixels are clearly defined as being associated with the floc (a value of zero) or 

background (a value of one).  In order to assign the flocs a one value for counting 

purposes, the image properties must be inverted, so that the pixels that are ones become 

zeros and zeros become ones.   

Next, a series of processes is applied to differentiate individual flocs.  These 

processes include erosion processes, to disconnect touching particles that should be 

separated, and dilation processes, to apply a peripheral layer of pixels to the new non-

touching images (Allen, 1997).  After the individual flocs are differentiated, the flocs are 

labeled so that all pixels associated with a unique floc will have a separate label (Kilander 

et al., 2006).  Once flocs are labeled, the user has the ability to count the number of pixels 

in each floc, and if the pixel size is known, the particle sizes can be estimated.  In many 

instances, prior to labeling the flocs it may be necessary to clean up the image by placing 

an artificial border around the image so all flocs that are touching the edge of the image 

are not seen as connected, and it may be desirable to remove smaller flocs below a certain 

threshold that may be artifacts, debris, or broken pieces from larger flocs (Araya-Kroff et 

al., 2004; Contreras et al., 2004; Pons et al., 1993).  The floc size and size distribution can 

then be computed using an appropriate software program.  In some cases, the total 

projected surface area may be desired, which requires an additional step of removing the 

inner holes of the aggregates prior to labeling and counting pixels (Araya-Kroff et al., 

2004).   
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The image processing becomes more complicated when there are large amounts 

of filamentous organisms, which will create significant porosity within the floc or make 

separate flocs appear connected.  When filaments are present in a mixed culture, manual 

classification of filaments and floc-forming bacteria may be required (Contreras et al., 

2004).  A bottom hat filter can also be applied to enhance the filaments and other small 

aggregates that have lower grey levels (Araya-Kroff et al., 2004).  Araya-Kroff et al. 

utilize several steps to isolate filaments from the aggregates and characterize them 

separately.  The filaments are isolated through using a segmentation program coupled 

with a logic subtraction of the mask binary image that contains the larger aggregates.  

Then, smaller aggregates are removed based on a pixel area and radius of gyration 

threshold.  Finally, the filaments are skeletonized and pruned and the lengths are 

determined by:     

 calFNL  122.1  (2-29) 

where, N = the number of pixels in the skeletonized image; Fcal = the calibration factor 

[µm·pixel-1]; and 1.122 is a correction factor used to homogenize filaments at various 

angles. 
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CHAPTER III 

METHODOLOGY 

 

3.1 SOC Selection 

 An important step in this project was determining which SOCs would be selected 

as candidates for study.  Three major criteria had to be satisfied in order for an SOC to be 

used:   

 Industrial and environmental significance, 

 Available biodegradation pathway information, and  

 Chemical properties conducive to aqueous biological treatment.   

Primarily, test SOCs were taken from the USEPA priority pollutant list since these 

compounds have been identified as having industrial significance and as posing an 

imminent threat to public health and the environment.  However, some additional 

chemicals were also initially selected primarily due to similar research studies using 

them, which provides important information as to the chemical properties and a basis for 

comparison of results between studies. 

 Once a large preliminary list was established representing many SOCs that were 

both industrially and environmentally significant, those chemicals were cross-referenced 

with the University of Minnesota’s Biocatalyst/Biodegradation Database (UMBBD). This 

database compiles a list of chemicals for which the biodegradation pathways have been 
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studied and the intermediate enzymes within the process of biodegradation are given.  

This information is critical for developing primers for specific enzymes involved in the 

degradation of a given chemical.  By using this information, a much more manageable 

list was established for study, which includes only SOCs that have known degradation 

pathways.  In many cases, this database provides the actual organisms involved in the 

biodegradation, which is also useful in the molecular analysis of the biodiversity of the 

activated sludge system. 

 The next step in the selection process was to determine which of the given 

chemicals are most suitable for activated sludge treatment.  This involves looking at the 

important physicochemical properties listed previously.  The SOCs must be 

biodegradable, but the amount removed through abiotic processes must be minimized, 

such as sorption to the biomass or volatilization due to aeration, so that accurate estimates 

can be obtained for the biological removal efficiency.  In order to quickly access this 

information for the SOCs, the Estimation Programs Interface (EPI) SuiteTM was used as a 

screening tool to aid in determining which chemicals possess the appropriate properties 

(USEPA-SRC).  This software package was developed by the USEPA’s Office of 

Pollution Prevention Toxics and the Syracuse Research Corporation.  All preliminary 

SOCs that met the other two criteria were input into the EPI SuiteTM and the chemical 

information was copied into a spreadsheet to sort and compare the properties of the SOC, 

including Henry’s law coefficient and the octanol-water coefficient.  Actual experimental 

values from the program’s database were used when possible, but if they were not 

available the estimated values generated by the program were used.  
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 After these cross-analyzing procedures were applied, the list of available SOCs 

for study was significantly reduced.  To determine which of these chemicals would be 

most appropriate for study, several additional criteria would be applied.  The chemicals 

would ideally represent a broad range of functional groups and be readily quantifiable at 

low concentrations.  Also, the number of available DNA sequences for specific enzymes 

in the biodegradation pathway had to be within a manageable range for the primer 

development process.   The number of sequences available was determined by doing a 

search for the given enzyme using the Core Nucleotide database from the National Center 

for Biotechnology Information (NCBI).  After all of these criteria had been considered, 

four chemicals were selected as test SOCs for this study:  Acrylonitrile, Chlorobenzene, 

Methyl-tert-butyl-ether (MTBE), and Phenol.   

 

3.1.1 Acrylonitrile 

 Acrylonitrile (CAS 107-13-1) is a commonly produced industrial chemical that is 

primarily used in the manufacturing of copolymers for the production of acrylic fibers, 

nitrile rubber and plastic resins (USEPA, 1998; 1994; 1979b).  However, acrylonitrile 

poses serious health and environmental concerns, as it is explosive, flammable, and 

highly toxic (ACC, 1959), and it is a known carcinogen (USEPA, 1994).  There are 

several synonyms for acrylonitrile, including 2-propenenitrile, acrylon, carbacryl, 

cyanoethene, cyanoethylene, Acritet, Fumigrain, propenenitrile, VCN, Ventox, and vinyl 

cyanide (USEPA, 1998).  The chemical formula is C3H3N and the structure of 

acrylonitrile, presented in Figure 3.1, is a planar molecule with an assumed bond length, 

α, of 120° (ACC, 1959).       
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Figure 3.1 Structure of acrylonitrile (ACC, 1959). 
 

 

According to the USEPA (1994), volatilization is a potential transport mechanism 

for acrylonitrile, but probably proceeds slowly based on Henry's law constant (1.38 x 10-4 

atm·m3·mole-1 from EPI Suite).  Furthermore, the USEPA suggest that the low log Kow 

(0.25 from EPI Suite) and high solubility make acrylonitrile minimally susceptible to 

adsorption to sediment or suspended particles.  Therefore, the majority of removal from a 

biological wastewater reactor, if any is discovered, would most likely be a result 

biodegradation and not physical removal processes.  Acrylonitrile undergoes 

biodegradation via the pathway presented in Figure 3.2.  From this information, primers 

may be developed based on the sequences of the initial enzymes from both pathways, 

aliphatic nitrilase and nitrile hydratase/amidase.  The toxicological information provided 

in the Material Safety Data Sheet (MSDS) for acrylonitrile indicates a LD50 for oral 

ingestion in a rat (LD50oral,rat) is 0.15 g·kg-1.    
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Figure 3.2 Acrylonitrile biodegradation pathway (Adapted from: UMBBD). 
 
 

3.1.2 Chlorobenzene 

Chlorobenzene (CAS 108-90-7), a halogenated aromatic hydrocarbon, has several 

industrial uses both as an intermediate and as a solvent in chemical manufacturing 

processes (USEPA, 1995).  Chlorobenzene is used as an intermediate in the production of 

rubber chemicals, agricultural chemicals, antioxidants, and dyes and pigments.  It has 

also been used in the production of phenol and aniline, and as a solvent in the production 

of paints, adhesives, pharmaceuticals, and waxes.  Chlorobezene is not a known 

carcinogen, but according to the USEPA, it has been shown to cause acute and chronic 

problems with the liver, kidneys, and the central nervous system.  There are several 

synonyms for chlorobenzene, including monochlorobenzene, chlorobenzol, phenyl  
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chloride, and benzene chloride.  Chlorobenzene’s chemical formula is C6H5Cl and its 

structure, presented in Figure 3.3, is a benzene ring with a substituted chlorine. 

 

 

Figure 3.3 Structure of chlorobenzene (McMurry, 1984). 
 

 

According to the USEPA (1995), volatilization is a major transport mechanism 

for chlorobenzene based on Henry's law constant (31.1 x 10-4 atm·m3·mole-1 from EPI 

Suite).  Furthermore, the log Kow value (2.84 from EPI Suite) and lower solubility 

suggest that chlorobenzene has the potential for adsorption to AS particles in the 

wastewater treatment process.  The major removal mechanisms for chlorobenzene in the 

AS system would be evaporation and biodegradation, with a smaller portion attributed to 

adsorption (USEPA, 1995).  Since evaporation is a significant factor, the % removal must 

be estimated using KH and the known aeration rates in the reactors.  Chlorobenzene 

biodegrades via the pathway presented in Figure 3.4.  Primers could be developed based 

on the nucleic acid sequence of the initial enzyme chlorobenzene dioxygenase, which is 

specific to chlorobenzene.  Another possible enzyme that could be used from the pathway 

is catechol-1,2-dioxygenase used to metabolize catechol, which is a common 

intermediate in several aromatic biodegradation pathways and has the added benefit of 

being studied in previous research (Rudolph & Grady, 2002; Mesearch et al., 2000).  The 

LD50oral,rat for ingestion of chlorobenzene is 1.1 g·kg-1 as reported in the MSDS.  
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Figure 3.4 Chlorobenzene biodegradation pathway (Adapted from: UMBBD). 
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3.1.3 Methyl-tert-butyl-ether 

 Methyl-tert-butyl-ether, MTBE, (CAS 1634-04-4) is a synthetic compound 

primarily used as a fuel additive designed to increase combustion efficiency and reduce 

harmful emissions such as ozone and carbon monoxide.  MTBE is reported as a possible 

carcinogen which can target the kidneys and the central nervous system, however all 

toxicological properties have not been thoroughly investigated (Jacobs et al., 2001).  

Synonyms for MTBE include tert-butyl-methyl-ether and 2-methyl-2-methoxy-propane. 

MTBE is an aliphatic ether with the chemical formula C5H12O, as shown in the structure 

presented in Figure 3.5 with α equaling 122 degrees. 

 

 

Figure 3.5 Structure of MTBE (Jacobs, 2001). 

 

 MTBE exhibits a relatively high solubility (51 g·L-1 from EPI Suite) and low 

Henry's law constant (5.87 x 10-4 atm·m3·mole-1 from EPI Suite) compared with other 

VOCs, which suggests it preferentially partitions into the water phase when introduced 

into the environment.  Diaz & Drogos (2002) further suggest that MTBE’s low 

adsorption potential, as evidenced by the log Kow value (0.94 from EPI Suite), and low 

biodegradability make it a significant environmental concern since it will travel with the 

groundwater and surface water flows, causing serious impacts on water quality.  MTBE 

is both recalcitrant and toxic to natural microorganisms, and as such it not only resists 



www.manaraa.com

48 

biodegradation but it may inhibit the degradation of other SOCs (Jacobs et al., 2001). 

MTBE undergoes biodegradation via the pathway presented in Figure 3.6.  From this 

information, primers can be developed based on the nucleic acid sequence of either initial 

enzyme, alkane-1-monooxygenase or the unspecific monooxygenase.  It is also an 

interested note that alkane-1-monooxygenase is present again later in the biodegradation 

pathway.  MTBE has a LD50oral,rat of 4 g·kg-1 reported in the MSDS. 

 

 

 

Figure 3.6 MTBE biodegradation pathway (Adapted from: UMBBD). 
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3.1.4 Phenol 

Phenol (CAS 108-95-2), a naturally occurring compound found in coal tar, is 

industrially synthesized due its high demand for use in the manufacturing of an array of 

products, including antiseptics, resins, adhesives, disinfectants and explosives (McMurry, 

1984).   The largest use of phenol is as in intermediate in the production of phenolic 

resins (USEPA, 2002).   According to the USEPA, the toxicological effects associated 

with phenol include lung, liver, and kidney problems; tremors and other central nervous 

system effects; and at high doses it can be fatal.  Synonyms for phenol are benzenol, 

hydroxybenzene, monophenol, oxybenzene, phenyl alcohol, phenyl hydrate, and phenyl 

hydroxide.  The structure of phenol, illustrated in Figure 3.7, is a benzene ring with a 

substituted hydroxyl group, having the chemical formula C6H6O. 

 

 

Figure 3.7 Structure of phenol (McMurry, 1984). 
 

 

 Based on the low Henry's law constant (0.00333 x 10-4 atm·m3·mole-1 from EPI 

Suite) and moderate solubility (87 g·L-1 from USEPA, 2002), phenol is not likely to 

evaporate from the aqueous system and should remain in solution at the lower 

concentrations expected in this study.  Also, phenol’s log Kow (1.46 from EPI Suite) 

suggests that it is somewhat hydrophobic, but should not significantly adsorb to the 

activated sludge particles.  Phenol undergoes biodegradation via the pathway presented in 
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Figure 3.8.  Primers could be developed from this information based on the phenol-

specific enzyme phenol-2-monooxygenase early in the pathway or based on the enzymes 

used for the intermediate catechol biodegradation, either catechol 2,3-dioxgenase or 

catechol 1,2-dioxygenase.  Since, as mentioned previously, catechol is an intermediate 

for several aromatic compounds, using these enzymes could give a broader assessment on 

the AS population and the phenol-specific enzyme could look directly at those bacteria 

responsible for its biodegradation.  The specific population directly utilized in phenol 

removal during AS treatment has been analyzed in several studies, using microbiological 

enumeration techniques (Magbanua et al., 1998) and genetic techniques (Watanabe et al., 

1998).  Phenol has a LD50oral,rat of 0.32 to 0.51 g·kg-1 reported in the MSDS.  

 

 

Figure 3.8 Phenol biodegradation pathway (Adapted from: UMBBD). 
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3.1.5 SOC Quantification 

 Influent SOCs were precisely dosed using syringe pumps, and effluent samples 

were collected and analyzed to determine SOC removal in each reactor.  Effluent samples 

were collected directly from the discharge lines of each reactor during their normal 

operations, such that reactor operation was not interrupted during the sampling process.  

Samples were collected in 40 ml glass sample vials with Teflon-lined caps and stored at 4 

ºC in accordance with the appropriate EPA sampling methods for each compound (Keith, 

1996).  SOC analysis was performed using a purge and trap extraction system and gas 

chromatography with mass spectrometry detection (GC/MS).  Samples were diluted with 

DI water to ensure that the SOCs were in an appropriate range for GC/MS detection, 

which was less than 500 µg·L-1 based on the calibration curves developed, and 10 mL of 

diluted sample was loaded into a gas tight syringe and injected.   

 The samples were first concentrated using a Tekmar 3000 purge and trap system 

(Tekmar, Cincinnati, OH, USA) equipped with a Vocarb 3000 K trap (Supelco, 

Bellefont, PA, USA).  The purge and trap sampler was programmed as follows: purge 

ready temperature, 30 °C; preheat temperature, 80 °C; preheat time, 10 min; purge time, 

20 min; line temperature, 200 °C; MCS line temperature, 200 °C; desorb preheat 

temperature, 245 °C; trap desorb temperature, 250 °C; trap desorb time, 5 min; trap bake 

temperature, 260 °C; trap bake time, 10 min.  

 The concentrated samples were then injected into a Varian Saturn II GC/MS 

(Varian Instruments, Inc., Palo Alto, CA, USA) fitted with a fused silica Rtx-Volatiles 

column (60 m×0.32 mm×1.5 μm df) (Restek, Bellefont, PA, USA). Chromatography 

conditions were as follows: injector temperature 250 °C; oven temperature, 35 °C for 3 
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min, increased to 200 °C at a rate of 10 °C·min−1, then maintained at 200 °C for 5.5 min.  

MS data was collected and analyzed to determine SOC concentrations using Varian Mass 

Spectrometry Workstation Version 6.3 (Varian Instruments, Inc., Palo Alto, CA, USA). 

 

3.2 Activated Sludge Reactors 

 This research attempted to study the effects that SOCs have on the activated 

sludge process through developing and maintaining lab scale wastewater treatment 

reactors.  These reactors were stabilized and acclimated to a biogenic feed, originally, and 

then were subjected to a specified amount of SOCs and monitored for changes in the 

biomass properties.  In order to assess any influence of the reactor flow regime, two 

different types of reactors were constructed:  a sequencing batch reactor (SBR) and a 

completely mixed activated sludge reactor (CMAS).  The reactors were designed with 

similar volumes, feed concentrations, flow rates, aeration rates and mixing power, such 

that the only significant difference is the flow regime between the two reactors.  Table 

3.1 presents the feed recipe for the synthetic wastewater influent.  The feed was 

autoclaved and sealed to inhibit any biodegradation prior to introduction into reactors. 
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Table 3.1 

Reactor feed composition. 

Component 
Concentrationa              

(mg/L) 
Concentrationa,b             
(mg/L as COD) 

Biogenic Substratesc    720 

Peptone  321.43  450 
Glucose  119.05  127 
Sodium Acetate  285.71  143 
   

Inorganic Nutrientsc     

(NH4)2SO4  142.86   
MgSO4  4.76   
CaCl2∙ 2 H2O  9.52   
FeCl3∙ 6 H2O  1.19   
KH2PO4  71.43   
     

SOCs    60 

Acrylonitrile  8.30  15 
Chlorobenzene  7.28  15 
Methyl‐tert‐butyl‐ether  8.26  15 
Phenol  6.30  15 
   

  TOTAL COD: 780 
a Concentrations are final influent concentration supplied to reactors. 
b Theoretical COD based on chemical formulas. 
c Feed prepared with deionized water and autoclaved at 121 °C. 
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 Two plexiglass lab scale wastewater treatment reactors were constructed with 

dimensions of 30.5 cm x 25.4 cm x 30.5 cm (L x W x H), with the actual water depth 

maintained at a working volume of 15 L plus freeboard for potential overfilling.  The 

reactors were supplied with air at a reported rate 0.261 cfm through two dual-port 

aquarium pumps.  Mixing was applied via a Barndstead dual-shaft mixer, using the high 

torque shaft and the control module set to an eight.  Both reactors were initially seeded 

with 15 L of return sludge from the Ernest E. Jones Wastewater Treatment Plant operated 

by the City of Starkville, MS.  The reactors were maintained at room temperature (23 ± 2 

°C) and the fine bubble air diffusers maintained the dissolved oxygen at a concentration 

above 2 mg·L-1.  The SBR operated at four cycles per day.  Each cycle consisted of a fill 

cycle of approximately 5 min, which varied slightly based on pump flow rates.  The 

concentrated feed solution was pumped at a rate of 0.75 L per cycle, or 3 L·d-1, and the 

dilution water was pumped at a rate of 6.75 L per cycle, or 27 L·d-1, in order to have a 

10:1 dilution of the concentrated feed and a 0.5 d hydraulic residence time (HRT).  The 

SBR then began the reaction phase, which lasted five hours.  After the react phase, the 

reactor entered the settling phase where all aeration and mixing was shut down and the 

solids were allowed to settle out for 1 h.  Finally, half of the reactor volume was decanted 

and the next cycle initiated.  The CMAS was continuously mixed and aerated.  The 

concentrated feed solution and dilution water cycled on every 30 min for approximately 7 

min, which varied slightly based on pump flow rates.  The concentrated feed solution was 

supplied to the CMAS at a rate of 62.5 mL per cycle, or 3 L·d-1, and the dilution water 

was pumped at a rate of 562.5 mL per cycle, or 27 L·d-1, to maintain a 10:1 dilution.  The 

CMAS overflowed directly into a 3 L conical clarifier which had a continuous underflow 
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that was returned to the reactor. The clarifier incorporated a low-speed mixer that was 

operated intermittently in order to enhance flocculation and settling.  The mixer was 

turned on for 10 seconds every hour during the time period when no pumps were on and 

there was no outflow, to reduce solids loss in the effluent.  In both reactors, sludge was 

wasted directly from the reactor chamber to maintain the appropriate SRT.  In the CMAS, 

the wastage pump cycled on every 2 h, while the SBR cycled on every 6 h just prior to 

the settling phase.  The wastage rate from each reactor was varied based on the MLVSS 

concentration, but the average daily wastage over the 5d SRT was 1.76 L·d-1 and 2.35 

L·d-1 for the CMAS and SBR, respectively.  For the 10 d SRT, the average wastage was 

0.66 L·d-1 for the CMAS and 1.21 L·d-1 for the SBR. 

 Both reactors were routinely tested to verify and maintain steady operating 

conditions.  The total (TSS) and volatile suspended solids (VSS) were monitored in the 

mixed liquor and effluent, and the SVI and effluent COD were measured, all in 

accordance with the Standard Methods (APHA et al., 2005).  The effluent was not 

filtered prior to COD determination, however the effluent soluble COD was estimated by 

correcting for the COD content of the effluent VSS.  The VSS was assumed to contain 

1.42 mgCOD·mgVSS-1, in accordance with the literature (Rittmann and McCarty, 2001); 

that stoichiometric factor was validated by comparison of filtered and non-filtered 

effluent samples (data not shown).  The influent and effluent flow rates, pH, and 

dissolved oxygen concentration in the reactors were also monitored.  In addition, the 

initial settling velocity (ISV) of the sludge interface was determined by pouring 1 L of 

mixed liquor, taken directly from the reactor, into a 1 L graduated cylinder and measuring 

the distance traveled by the sludge interface after 3 min.  The 3-min time interval was 
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selected solely based on experimental trials, and was sufficient to permit the 

establishment of a distinct sludge blanket underlying a clarified zone, but not for hindered 

settling to be perceptible. 

 

3.2.1 CMAS Kinetic Parameter Estimation 

Estimation of kinetic parameters provides quantitative analysis based on 

experimental results which can be used as a means to assess the treatment capabilities of 

a biological community or as potential predictive tools for simulations and modeling.  

The kinetic parameters are not typically estimated from full scale in-situ measurements, 

but instead, researchers often utilize respirometric techniques in which oxygen uptake 

data is coupled with substrate utilization (Goudar & Ellis, 2001).  The Monod kinetic 

parameters can then be approximated through the use of regression analysis.  Viessman 

and Hammer (2004) outline a previously developed procedure for estimating kinetic 

parameters from a CMAS reactor.  Using the mass balance presented as Eq. 2-10 and 

incorporating the assumptions that Xo is zero and the system is at steady-state with 

constant volume, Eq. 2-10 can be rewritten as follows: 

  dg
eeww rr
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XQXQ
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(3-1) 

Substituting Eq. 2-6 and Eq. 2-7 for rg and rd, respectively, and dividing by X results in: 
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Further recognition that the left side of the Eq. 3-2 is the inverse of Eq. 2-5, Eq. 3-2 can 

be rewritten as: 



www.manaraa.com

57 

 
b

SK

S

SS

S
m

C




 

1

 
(3-3) 

where θC  is the SRT.  Finally, letting k equal µm/Y, the resulting linear equation takes the 

form of: 
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Veissman and Hammer (2004) point out that the specific substrate utilization rate, U      

[t-1], can be determined from experimental data as: 
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where τ is the HRT [t], or simply the flowrate through the system divided by the reactor 

volume.  Therefore, Eq. 3-4 is simplified to the common y = mx + b linear form by 

substituting U, with the slope being equal to the growth yield, Y, and the y-intercept is 

then equal to the decay coefficient, b.  Experimental data for the initial and final substrate 

concentration was then used to calculate the experimental Umeas.  Linear regression was 

performed on the data to calculate Y and b based on the plot of 1·θC
-1 versus Umeas.  

Inverting Eq. 3-5 results in another linear form that allows for the estimation of k and Ks.  

The values for k and Y can then be used to calculate µm for the biogenic substrate. 
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  For the SOC specific kinetic parameters, a similar approach was used, except the 

abiotic removal mechanisms and the competent biomass had to be approximated.  Grady 

et al. (1997) present a simplified method for estimating the contribution of abiotic 

mechanisms to the removal of SOCs by determining a dimensionless abiotic loss 
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coefficient which is based on the theoretical ratio of the reduction in capable biomass due 

to abiotic mechanisms to the concentration of capable biomass that would result from 

SOC biodegradation if there was no abiotic removal.  The resulting equation developed 

by Grady et al. (1997) took the form: 
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where γ is the fraction of SOC removal attributable to abiotic losses.  The authors further 

simplify the equation by substituting α, the dimensionless abiotic loss coefficient. 
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where 

   aKLV  (3-9) 

and 

 


 



C

Tp
S

Xk
 (3-10) 

Substituting α into Eq. 3-7 and rearranging the equation gives: 
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Since γ represents the fraction of SOC attributable to abiotic removal, it can be 

substituted into the specific substrate utilization rate equation as follows: 
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Using Eq. 3-12 in place of Eq. 3-5 to calculate Umeas in the previously outlined parameter 

estimation technique allows for estimation of the biodegradation kinetic parameters 

corrected for abiotic removal.   

 Magbanua et al. (1998) express the importance of accurate information about the 

competent biomass concentration in process simulations.  The authors point out the 

commonly applied assumption that the competent biomass concentration should be 

directly proportional to the ratio of CODs of the SOCs to the total feed COD. 
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(3-13) 

where XAi is the active biomass for constituent i, XT is the total biomass concentration, 

SOi is the initial feed concentration of SOC i and SOT is the total initial organic substrate 

concentration, with S best expressed in terms of chemical oxygen demand, COD.  

However, as part of their research the authors applied substrate-specific most probable 

number (MPN) microtechniques to approximate the competent biomass using the 

following ratio: 
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where MPNi is the MPN value determined from the SOC-specific growth media, and 

MPNR2A is the MPN value from the non-specific heterotrophic bacteria growth media.  

From the authors’ findings, it was determined that the use of the influent feed ratio often 

tended to underestimate the percentage of active biomass as compared to the MPN ratios.  

However the authors concluded that utilizing MPN microtechniques, which requires 

significant effort and introduces inherent variability, is not a realistic approach for each 
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system studied.  The authors further stated that due to the importance of having accurate 

biomass concentrations, the use of influent SOC ratios is a more realistic assumption than 

not having any correction for active biomass.  In order to simplify the current work, the 

commonly applied assumption represented by Eq. 3-13 will be used in this work to 

approximate the competent biomass. 

 

3.2.2 SBR Kinetic Parameter Estimation 

 Due to the cyclic nature of SBRs, extracting kinetic parameters should be 

accomplished by analyzing time-concentration data over the react period.  During the 

react period, there is no discharge and the substrate and biomass concentrations are not 

steady state.  Therefore, the mass balance equations remain as differential equations.  For 

the non-SOC biomass mass balance, Eq. 2-10 reduces to: 
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For the substrate mass balance, during the SBR react cycle Eq. 2-11 reduces to: 
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However due to the inherent difficulty of time dependent data collection in an SBR over 

multiple batches, especially in respect to SOC sampling protocols, the data collected for 

the SBR in this experiment was only based on initial and final values similar to the 

CMAS data.  In order to estimate the kinetic parameters, numerical techniques were used 

to approximate the final measured concentrations of X and S based on the initial values at 

the start of the react period.  Therefore, obtaining estimates of the kinetic parameters 

from the collected data required several key assumptions to simplify the estimation 
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process.  Based on the sampling procedures used, effluent and wastage was analyzed to 

provide solids information, and effluent data was collected regarding COD and SOC 

concentrations.  However, the initial concentrations at the start of the react cycle were not 

measured.  In order to estimate the initial solids concentration, it was assumed that the 

final biomass concentration, Xf, was constant over two successive react cycles.  In other 

words, the cycle prior to the cycle in which measurements were taken was assumed to 

have the same final biomass concentration as the cycle in which measurements were 

taken.  This allows for an approximate initial biomass concentration to be calculated 

based on the following equation.          

  eeWWffOO XVXVXVXV 
 

(3-17) 

where the subscripts o,f,w, and e represent initial, final, wastage, and effluent, 

respectively.  VO is equal to Vf, which is 15L, and Xf equals XW, due to the sample 

wasting at the end of the react cycle.   

 This same approach can be used to estimate the initial COD concentration by 

substituting S in the place of X.  In considering S, however, two additional assumptions 

were required.  The first was that no additional substrate removal occurred during the 

settling period, such that the effluent concentration was equal to the concentration at the 

end of the react cycle.  The second assumption was that the fill time was negligible, such 

that no substrate removal occurred during the fill time. 

  IIeeWWffOO SVSVSVSVSV 
 

(3-18) 

where I represents the influent.  Recognizing that based on the first assumption Sf = SW = 

Se and that since half the volume is replaced each cycle then Vf – VW – Ve = VI = ½ VO, 
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at t = 0 the concentration would ultimately be equal to the average of the initial influent 

concentration and the residual effluent concentration. 

 Utilizing these assumptions to estimate the initial concentrations, the 4th order 

Runge-Kutta method was used to numerically integrate the differential mass-balance 

equations.  The kinetic parameter estimates were taken as the values that minimize the 

objective function based on the errors associated with both substrate and biomass 

concentration at the end of the react period (Kesavan & Law, 2005): 
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Kesavan and Law (2005) suggest that the S and X values should be dimensionless values 

normalized by a constant of a similar magnitude to S and X, respectively.  The authors 

recommend using the initial concentrations as the normalizing constants but note that the 

actual value of the constants used do not affect the results.  For this research, the average 

effluent S and wastage X were the constants used.  Because S and X are interdependent, 

the multi-variable 4th-order Runge-Kutta was used as outlined below: 
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with the above equations applied to each variable j = 1,…,m.  The time step, h, was 

selected to be 0.25 min, and the numerical integration was applied for t = 0 min to t = 300 
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min to represent one full 5 h react cycle.  This method was used to provide an estimate of 

the kinetic parameters when no SOCs were present.  

 When SOCs are incorporated into the system, the loss due to volatilization and 

adsorption must be considered for the mass balance of individual SOCs.  It should be 

noted that since no wastage occurs until the end of the react cycle, it can be assumed that 

the S is sufficiently low as to reduce the loss due to adsorption to a negligible percentage.  

However, chemicals that adsorb to the biomass will ultimately affect the rate of 

biodegradation, because over the react cycle the total amount of substrate in the system is 

not available in solution.  In order to track the total mass of SOC present in the reactor, 

the mass can be approximated as: 
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where MSOC is the total mass of a specific SOC in the reactor.  Differentiating this 

equation gives: 
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In order to fully track the mass balance of the SOCs in the react phase of the SBR, the 

right side of Eq. 3-26 should be set equal to the right side of Eq. 3-16 with the 

volatilization term added back and the right side divided by the reactor volume to have 

consistent units. 
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 Due to the limited data collected, specifically having only the effluent and 

wastage data, the ability to track the time-dependent processes in multiple phases over the 
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react cycle presents a significant challenge.  In order to simplify the process and enable 

estimation of the biodegradation kinetic parameters, several assumptions are required.  

Due to the more complex nature of the SBR kinetics, it was assumed that the total 

biomass concentration remained constant and was taken to be the total MLVSS measured 

in the wastage.  Although this assumption does not take into account biomass growth 

over the react period, the biomass concentration in the wastage is likely at or near the 

maximum concentration reached during the react period, which allows for a conservative 

approximation of the kinetic parameters.  This simplifies Eq. 3-27 to: 
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This equation incorporates the biodegradation rate expressed using Monod kinetics, but 

Kovarova-Kovar and Elgi (1998) report the use of a first order parameter fit in situations 

when the substrate concentration is low, which is the case with the SOCs in this 

experiment.  The authors point out that any combination of µm and KS will fit equally 

well and ultimately only the ratio of µm:KS  is significant at low substrate concentrations 

in a batch system.  Therefore, the rbio was assumed to be first order in respect to S and a 

rate constant, kb, was the selected parameter for the SOC data analysis in the SBR. 

    VSXkr abbio 
 

(3-29) 

 Another important assumption used to estimate the SOC specific kinetic 

parameters in the SBR was that the active biomass concentration, Xa, was constant over 

the react cycle.  This is based on the noted condition from Goudar and Ellis (2001) which 

suggests that when the ratio of substrate to biomass is relatively low then cell growth is 

minimized.   The active biomass concentration was estimated based on the wastage 
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MLVSS concentration and was assumed directly proportional to the influent feed ratio as 

indicated in Eq. 3-13.  When the appropriate equations for rbio and rvol are then substituted 

into Eq. 3-28, using the assumed constant Xa, the equation reduces to a first order 

approximation which can be integrated and solved analytically: 
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Using Eq. 3-30, the SOC concentration in the SBR can be estimated as a function of time, 

and the effluent SOC concentration may be approximated by solving for t = 300 min.  

The kinetic parameter, kb, was selected such that objective function was minimized.  

Since biomass was assumed constant, only the substrate terms in Eq. 3-19 were used.  

 

3.2.3 Experimental KLa Determinations 

 In order to estimate the removal of SOCs due to volatilization, the KLa for oxygen 

transfer had to be experimentally approximated for each reactor to allow the use of Eq. 2-

14 to determine the KLa for SOC volatilization.  This determination was based on the rate 

of oxygen transfer using the dissolved oxygen balance presented by Mineta el al. (2011): 
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where OTR is the oxygen transfer rate and OUR is the oxygen uptake rate by the 

biomass, represented by rO2 .  C
*

 is the saturated DO concentration, which is primarily a 

function of temperature, pressure, salinity and specific conductance of the water.    

Rearranging and integrating Eq. 3-33 results in the following derivations: 
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  Using Eq. 3-37, the DO concentration is a function of time.  In order to 

approximate KLa in the CMAS, the DO concentration was monitored as a function of 

time using a DO meter (Yellow Springs Instruments, Ohio) interfaced with a laboratory 

computer to record the DO concentration every 15 s.  However, if the feed was allowed 

to pump every 30 min as originally set up the dissolved oxygen would present a cyclic 

profile due to the increased OUR as a result of the influent COD, as the representative 

DO profile from the CMAS in Figure 3.9 indicates. 
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Figure 3.9 Representative dissolved oxygen profile with intermittent feed cycle in 
the CMAS reactor.  

 
 

Therefore in order to perform KLa determination tests in the CMAS, the feed and 

all wastage were discontinued to allow the DO to approach a constant value.  Once the 

DO was stable, the aeration equipment was shut down and the mixing was turned down 

to a minimal amount required to maintain the solids in suspension.  Under these 

conditions, the OTR is assumed to be zero and thus Eq. 3-33 reduces to a first order 

equation. 

 
2Ordt

dC


 
(3-38) 

If rO2 is assumed to be constant over this short time period, then the straight line equation 

presented as Eq. 3-39 can be best-fit to the measured DO data to determine a value for 

rO2. 

 
trCC OO 2
 

(3-39) 

Linear regression was performed on the CMAS DO data over the time when aeration was 

discontinued to estimate rO2.  With a value for rO2, the aeration equipment was returned to 
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normal operational settings and Eq. 3-37 was used to determine a KLa value.  This was 

done with a Solver routine in Excel, in which KLa and C* were selected to minimize the 

sum of the residual error between the measured DO concentrations and the calculated DO 

concentrations.  Figure 3.10 provides a representative curve fit for the determination of 

KLa. 

In the SBR reactor, a similar method was used to determine KLa.  However, since 

the SBR DO concentration would not reach a steady-state value until near the end of the 

react period, as indicated by the representative SBR DO profile in Figure 3.11, an 

adjustment in the data was required to approximate KLa for the SBR. 

 

 

Figure 3.10 Curve fit for KLa estimation in the CMAS reactor. 
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Figure 3.11 Dissolved oxygen profile in the SBR. 
 
  

 As Figure 3.11 indicates, the region outlined as the linear segment is a period 

during the react cycle when the rate of change in the DO approaches a constant value, 

and although OTR does not equal OUR, OTR minus OUR is approximately constant.  

Over multiple evaluations of the SBR reactor, this linear region would consistently occur 

in the range of approximately 60 to 150 min, which would allow ample time to conduct 

the KLa determination.  In order to perform the KLa approximations, the DO data over 

this range was normalized to the rate of change, such that a horizontal DO profile was 

generated, and the curve fit was conducted on the slope-corrected DO data as indicated in 

Figure 3.12.   
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Figure 3.12 (A) Representative plot of measured SBR DO profile with constant 
slope.  (B) Representative plot of slope-corrected data and KLa 
estimation curve-fit. 
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With these approximations for KLa for oxygen transfer in both the CMAS and the 

SBR, the KLa for specific SOCs was then approximated based on the ratio of diffusion 

coefficients using Eq. 2-14.  The diffusion coefficients, D, were estimated using the 

correlation developed by Wilke and Chang (1955): 
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104.7
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TxM
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(3-40) 

where D is in cm2·s-1, x is the association parameter for the solvent presented by Wilke 

and Chang to be 2.6 for water, M is the molecular weight of the solvent in g·mol-1, T is 

temperature in Kelvin, η is the viscosity of the solvent in centipoise, and Vm is the molar 

volume of the solute at normal boiling point in cm3·mole-1.  Inputting the parameters for 

water as the solvent and the given experimental conditions, the equation is simplified to a 

function of molar volume of the solute: 
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From this equation, the diffusivities of the SOCs were calculated, and the resulting ratios 

where used in Eq. 2-14 to determine the specific SOC KLa values used in the parameter 

estimation.  Vm for oxygen was taken as 25.6 (Wilke & Chang, 1955).  The Vm for each 

of the SOCs was determined from the ideal gas law: 
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(3-42) 

where (Vm)2 is the molar volume at the normal boiling point, T2 in Kelvin, and (Vm)1 is 

the molar volume at standard temperature, T1 = 293.16 K.  Therefore, (Vm)1 was taken as 

the manufacturer reported molecular weight divided by the density for each SOC. 
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3.3 Molecular Analysis 

 A major focus of this study is to determine how the AS community transitions as 

a function of the specific SOCs that are incorporated into the influent waste stream and as 

the operational treatment strategies are varied.  Molecular techniques are a primary tool 

used in this study to assess the variations of the bacterial populations in response to 

changing reactor conditions.  Direct DNA extraction from the AS community coupled 

with PCR amplification and direct gradient gel electrophoresis should be a viable method 

of comparing the genetic fingerprints of the microbial population as changes to the 

treatment system operations are introduced. 

 

3.3.1 DNA Extraction  

 Several researchers have demonstrated that direct extraction from the microbial 

sample allows for a less selective extraction which elutes more than 90% of the species 

present in the environmental sample (Watanabe et al., 1998; Widada et al., 2002).  In 

order to extract the DNA from our AS reactors, we utilized the UltraCleanTM microbial 

DNA isolation kit (Mo Bio Laboratories, Inc., Carlsbad, California).  Due to the larger 

sediment content and floc aggregation of the AS samples, lower than expected yields 

were extracted following the kit’s original protocol, shown in Appendix A; therefore, the 

protocol was modified.  In the modified protocol, also presented in Appendix A, the 

sample was initially concentrated to generate an initial sludge mass between 2 and 5 

grams.  This was done by taking two 2-mL samples from each reactor, centrifuging, 

removing the excess supernautant, and combining the sludges from the same reactor into 

one microfuge tube.  This range was experimentally determined to yield enough DNA     



www.manaraa.com

73 

(>100 ng·mL-1) while not over-concentrating the sample such that processing was too 

challenging during the phase-separation steps due to the high solids content.  Over the 

course of running the reactors, however, the sludge concentrations occasionally would 

exceed 2.5 g·L-1 and would require taking one 2-mL sample as opposed to taking two and 

concentrating them in the initial step.  The other modifications include inverting the 

samples instead of vortexing to maintain the length of the DNA strands and increase 

yield, and instead of using a horizontal vortex adaptor during the lysis phase, the samples 

were processed using the Disruptor GenieTM cell disruptor (Scientific Industries, Inc., 

Bohemia, New York).  The Mo Bio kit primarily uses microspin filters to trap the genetic 

material once the cells are lysed, and the DNA was washed to remove proteins and other 

impurities.  Finally, the DNA was eluted from the filter with the appropriate buffer 

solution, labeled MD5 in the kit.  After the DNA was extracted, it was quantified in 

ng·µL-1 using the NanoDrop® ND-1000 spectrophotometer (NanoDrop Technologies, 

Inc., Wilmington, Delaware).  The DNA was then stored at -20 °C for downstream 

processing.      

 

3.3.2 Polymerase Chain Reactions 

 Polymerase chain reaction (PCR) technology is an important part of the molecular 

analysis process.  PCR is used to selectively amplify a sequence of interest from the 

extracted DNA so that the bands would be visible on the DGGE gel.  PCR-DGGE of 

ribosomal DNA from environmental samples without the use of selective enrichment 

cultures was introduced by Muyzer et al. (1993).  Since that time, it has become a well-

established investigative technique for analyzing the diversity of a microbial population 
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from numerous environments and is often used to determine the community dynamics in 

response to environmental variations (Ercolini, 2004).  For PCR to be successful, an 

appropriate primer must be selected and the PCR conditions must be optimal for the 

given region. 

 When amplifying via PCR, an appropriate genetic region must be selected that is 

similar across a range of bacteria, but also has unique sequences within the region that 

allow for differentiating between species.  As indicated previously in Table 2.2, several 

studies have been conducted using PCR amplification of environmental populations, 

including AS communities.  The fragments used in this study will be derived from the 

amplification of 16S rDNA genes from genomic DNA extracted directly from the 

activated sludge (Muyzer et al., 1993).  The primers used in this study will also 

incorporate a GC-clamp which is commonly used to insure that the DNA fragment will 

remain partially double-stranded and the region being screened is part of the lowest 

melting domain (Ercolini, 2004).  The primers that were ultimately selected are presented 

in Table 3.2 which is adapted from a compilation of primers presented by Nakatsu et al. 

(2000).  The primers were synthesized by Integrated DNA Technologies (Coralville, 

Iowa).   
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Table 3.2 
 

PCR primers for specific amplification of 16S rDNA genes. 
 

Primer 
16S rDNA target 
(base number)a Primer Sequence 

PRBA338F Bacteria V3 Region (338-358) 5' bAC TCC TAC GGG AGG CAG CAG 3'

PRUN518F Universal V3 Region (534-518) 5' ATT ACC GCG GCT GCT GG 3' 

PRBA968F Bacteria V6 Region (968-983) 5' bAA CGC GAA GAA CCT TAC 3' 

PRBA1406R Bacteria V6 Region (1406-1392) 5' ACG GGC GGT GTG TAC 

PARCH340F Archea V3 Region (340-358) 5' bCC TAC GGG GC/TG CAG/C CAG 3' 

PARCH519R Archaea V3 Region (534-519) 5' TTA CCG CGG CG/TG CTG 3' 

aBases numbered relative to E. coli 16S rRNA sequence. 
bGC clamp added to the 5' end of the primer,  
  5' CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG CGG G 3' 
 

 

 The amplification mixture in this study had a final volume of 50 µL and contained 

25 pmol each of forward and reverse primer, 200 µM of each dNTP, 2.5 units of Taq HS 

polymerase, 5 µL 10X PCR buffer (dNTPs, Taq, and buffer supplied by Takara Bio Inc., 

Otsu, Shiga, Japan).  The PCR buffer consists of 100 mM Tris-HCl (pH 8.3), 500 mM 

KCl, and 15 mM MgCl2.  The amount of template varied due to the variance in the 

extracted DNA yield, however it was diluted to approximately 50 ng of template per 

reaction.  The PCR reaction was performed in an Eppendorf Mastercycler® (Eppendorf 

North America, Westbury, New York), with an initial denaturation step at 94 °C for 9 

min, followed by 30 cycles of 94 °C for 30 sec, 55 °C annealing for 30 sec, 72 °C 

extension for 30 sec, and a final extension at 72 °C for 7 min.  Presence of PCR products 
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was confirmed by electrophoresis on a 2%-agarose gel stained with ethidium bromide.  

The gel was run for 1 hr at 100V. 

 

3.3.3 Direct Gradient Gel Electrophoresis 

 Perpendicular DGGE was performed using the D-Code Universal Detection 

System (Bio-Rad Laboratories, Hercules, California).  A 7.5 % polyacrylamide gel was 

cast using the Bio-Rad gradient delivery system and it contained a gradient of denaturant 

from 35 % to 75 % (100 % denaturant is 7 M urea and 40 % deionized formamide).  

DGGE was run at 100 V for 17 hours at 60 °C in 0.5X TAE electrophoresis buffer.  The 

gel was stained for 15 min with EtBr and destained for 30 min with DI water.  Gel 

images were captured and stored using the Syngene GeneGenius Bio Imaging System 

and associated GeneSnap software (Synoptics, Inc., Frederick, Maryland).  Statistical 

analysis of the gels was conducted using additional Syngene software, including 

GeneTools and GeneDirectory.  In order to compare across multiple DGGE gels, 

standard lanes, which should form the same banding patterns under consistent DGGE 

conditions, were run in parallel to the samples (Van der Gucht et al., 2001).  Using 

GeneDirectory, dendrograms were obtained by unweighted pair group method average 

(UPGMA) based on the Dice similarity coefficient of the banding patterns.  A 1% 

tolerance was used.     

 

3.3.4 Diversity Indices 

 In addition to comparison of the DGGE community profiles, multiple diversity 

indices were used to describe and compare between individual samples.  The Shannon  
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(H), Simpson (D), and Evenness (E) indices were used, which are calculated as follows: 
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where pi is the relative intensity of the ith band and S is the species richness, or total 

number of bands in a given lane, which is also used as an indicator of diversity between 

samples.  The Simpson index is reported as D´ = 1/D, such that D´ and H will increase 

with an increase in diversity.   E, a measure of community variation, is constrained 

between 0 and 1 with a higher E indicating less variation within the community.  The 

diversity indices were included in additional statistical analysis using SAS 9.2 for 

Windows (SAS Institute Inc., Cary, NC).   The GLM procedure was used with the 

MEANS procedure and the Tukey-Kramer method to determine if there were statistically 

significant differences (α < 0.05) in the diversity values and other measured reactor 

performance parameters based on the three class variables: (1) reactor configuration, (2) 

presence of SOCs, and (3) SRT.  Spearman’s rank correlation method was used to 

evaluate the correlation between the diversity indices and the selected treatment 

performance parameters. 

 

3.4 Microscopic Floc Analysis 

 Microscopic image analysis of the floc morphology was another key focus of this 

research to determine if variations in the specified floc parameters exhibited statistically 
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significant correlation with the incorporation of SOCs and other induced reactor 

operational changes.  Microscopic image analysis (IA) is a tool that has been used 

recently in analyzing the AS community structure and in modeling the settleability of AS 

flocs (Araya-Kroff et al., 2004; Contreras et al., 2004; Grijspeerdt & Verstraete, 1997).  

Particles with a homogenous, regular shape can be specified using a single dimension, 

such as the diameter of a sphere or the side of a cube.   Most particles, however, 

including AS floc particles, are often irregular and have an infinite number of linear 

dimensions (Allen, 1997).  Consequently, comparisons must be based on relevant shape 

factors or size equivalents.  In AS cultures with biomass concentrations between 0.5 – 4 

g·L-1, the equivalent diameter (De), form factor (FF), aspect ratio (AR), and roundness 

(RD) exhibited a significant and reproducible correlation with the SVI and settling 

efficiency (Grijspeerdt and Verstraete, 1997).     

 

3.4.1 Sample Preparation and Image Capture 

 Samples for microscopic IA were collected directly from the reactors by pipetting 

100 µL of mixed liquor onto a 75 x 51 mm microscope slide and covering with a 45 x 50 

mm cover slip.  The samples were collected using an adjustable-volume, single channel 

pipette with a disposable tip that had been trimmed to create a larger mouth, since it is 

critical when conducting IA to maintain floc integrity and avoid disrupting floc 

morphology during sampling (Araya-Kroff et al., 2004).  The large slide and cover slip 

were used because, on a standard slide, a large portion of the flocs would be pushed to 

the edges of the cover glass, artificially creating larger flocs.  The larger slide also 

provided sufficient room such that sample dilution was not necessary.  Previous research 
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showed that a minimum of 150 objects are required to achieve statistically relevant 

results (Grijspeerdt & Verstraete, 1997).  In this work, it was determined that 120 images 

would easily exceed this minimum quantity of objects and would allow for good 

coverage of the single slide without replication.  Images were viewed using a phase-

contrast microscope at a 40X total magnification with an accompanying CCD camera.  

Live images were transferred to the computer via a USB connection and were saved as 

bitmapped files for further processing.   

 

3.4.2 Software development  

 Developing the software for image processing was an essential component to this 

research which allowed for automated analysis of a large quantity of floc images.  

Although the image capture was performed manually, the IA program made it possible to 

process the large number of floc images and efficiently evaluate the geometric properties 

of the flocs.  Initially, manual processing took close to 1 h per sample, but with practice 

and increased proficiency, the typical processing time for each sample was reduced to 

less than 30 min. The program had to rapidly iterate several tasks for typically 120 to 130 

image files per sample: access the file, convert the grey-scale image to a binary image, 

then calculate the geometric properties of each floc. The IA program was written in 

MATLAB (The MathWorks, Natick, MA) and called several functions from the 

MATLAB image processing toolbox.  The program closely followed algorithms 

described in  previous research (Contreras et al., 2004), in that it first determined a 

threshold grey level to differentiate the flocs from the background and generate a 

monochrome image which was then subjected to further processing. 
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The original program that we attempted to use was created by Peter Rush, an 

undergraduate student in the Computer Science Department.  This program, presented in 

Appendix B, utilized the bottomhat function in MATLAB and was helpful in analyzing 

individual images, but required user manipulation for each image depending on the 

contrast and connectivity of the image.  However, the nature of our work required that 

multiple images be processed in rapid succession in order to give a representative 

estimate of a complete slide which could be more than 150 images.  In order to process 

multiple images, a more standardized image processing program had to be written that 

would not require user input for each individual image.  The new program would utilize 

the greythresh function in MATLAB to calculate the appropriate value within each image 

that would most effectively differentiate between the background and the flocs.  

 During the image processing program, several successive functions are called 

which manipulate the image into a format that can be used for final calculations of the AS 

flocs’ shape and size.  Then, the processing program is included into a loop function that 

is called for each image and stores the calculated values in an appropriate array.  For an 

individual image the steps are outlined in Table 3.3.  Floc morphology was assessed 

based on size and shape descriptors identified in previous research (Grijspeerdt & 

Verstraete, 1997).  Floc size was quantified as the projected area (A) and the De.  The IA 

program discretized flocs based on groups of connected pixels and counted the number of 

pixels in each floc.  The individual pixel area was found to be 0.53 µm2 by using an 

objective micrometer, and A was determined by multiplying the pixel area by the number 

of pixels in each floc.  De was calculated from A using Eq. 2-17, shown previously.  The 

FF, AR, and RD, described previously, were used as shape descriptors.  The FF varies 
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between 0 and 1, with a circle having FF = 1 and an infinitely thin line approaching zero.  

AR is minimum (=1) for an object that can be contained within a circle and increases as 

the object is elongated.  RD is primarily influenced by the elongation, while the FF is 

influenced both by elongation and by the roughness of the perimeter.  Similar to the 

DGGE analysis, the GLM procedure was used with the MEANS procedure and the 

Tukey-Kramer method to determine if there were statistically significant differences (α < 

0.05) in the measured variables based on the three class variables: (1) reactor 

configuration, (2) SRT, and (3) presence of SOCs.  Spearman’s rank correlation method 

was used to evaluate the correlation between the size and shape parameters and the 

performance parameters.  The modified MATLAB code for floc image analysis is 

presented in Appendix B.  
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Table 3.3 

List of select MATLAB functions for image processing. 

Erode the image edge back to 
original size

Remove small debris and 
background noise

Im = imerode( Im, '<SE>' )

Im = bwareaopen( Im, '<size>' )

Read image file into an array

Calculate an appropriate 
threshold to convert to a 

binary image

Convert to black and white 
image

Define an appropriate 
structural element for image 

dialation

Im = imdialate( Im, SE)

Im = imfill( Im , 'holes' )

Dilate the pixels in the image 
to close any spaces

Fill the any voids within a 
given floc

( Im2 , Num ) = bwlabel( Im )

Stats = regionprops( '<desired>' )

Label and count individual 
images

Calculate the physical 
properties desired

Action MATLAB Command

I = imread( 'Filename' )

 X = graythresh( I )

Im = im2bw( I , X )

SE = strel( '<shape>','<size>' )
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 The original image is captured using the video camera package attached to the 

microscope.  The image is stored and converted into a numerical representation using 

MATLAB’s imread function. Figure 3.13 is a sample image after being stored.   

 

 

Figure 3.13 Original captured image. 

 

 Once the image is read into MATLAB, the graythresh function is used to compute 

a global threshold for the image so that it can be converted to a black and white image.  

Once the threshold level is computed, the image is converted to black and white using 

MATLAB’s im2bw function which results in an image in which all pixels are given a 

value of either 1 (white) or 0 (black).  Figure 3.14 is shows the image after the conversion 

to black and white.  
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Figure 3.14 Image after conversion to black and white. 

 

 After the image is converted to black and white, an artificial border is placed 

around the image to remove the boundary lines on the original image and to make sure 

that any flocs that contact the boundary of the image are disconnected.  Then, the pixel 

values are reversed (0 = 1 and 1 = 0) to improve the downstream dilation, filling, and 

erosion functions.  Figure 3.15 illustrates the same image after inversion of the pixels. 

The individual white pixels are then dilated using an elongated structuring element to 

connect the pixels that are part of the same floc and to foster a more solid perimeter to aid 

in the filling process, as shown in Figure 3.16.  Next, in Figure 3.17, the image is filled to 

encompass the projected surface area of each floc.  The erosion function, imerode, is 

used to make the edges less rounded and more representative of the original floc shape 

(Figure 3.18).   
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Figure 3.15 Image after addition of border and inversion of pixels. 

 

 

Figure 3.16 Image after pixel dilation. 
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Figure 3.17 Image after filling. 

  

 

Figure 3.18 Image after erosion. 
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 Finally, the smaller particles are removed so that debris and broken floc matter 

does not skew the data towards smaller flocs.  The final image now gives a black and 

white representation of the original image.  This black and white image can be read into 

other MATLAB functions and the white pixels can be used to give a quantitative 

measurement for each individual floc.  The pixels and their orientation within the image 

array can be used to calculate physical properties of the flocs.  Ultimately, this image data 

can be statistically correlated to other reactor parameters and treatment capabilities.  

Figure 3.19 provides a comparison of the final image to the original image. 

 

 
 
Figure 3.19 Representative sample of an original gray-scale image prior to image 
 analysis (A) and monochromatic representation (B) used to determine 
 size and shape parameters of the AS flocs. 
 

 

 

 

A  B
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1 Reactor Performance 

 The lab-scale reactors were subjected to variations in operational conditions to 

assess the effects of these changes on the AS community.  At start-up the reactors were 

operated with a 5 d SRT and no SOCs.  Although the reactors had been in operation for 

several months prior, Day 0 was taken to be the day that all testing procedures were 

standardized and the reactors were online and functioning consistently.  From this date, 

the SOCs were introduced on Day 72, the SRT was changed from 5 d to 10 d on Day 

147, and the tests were concluded on Day 218.  Period 1 (P1) refers to days 0 to 72, 

Period 2 (P2) refers to days 73 to 147, and Period 3 (P3) refers to days 148 to 218.   

Values of selected performance parameters for each reactor are presented in Table 4.1.  

Overall, both reactors were effective at utilizing soluble COD attaining average soluble 

COD removals of 95 % and 93 % for the SBR and the CMAS, respectively, when 

corrected for the effluent VSS contribution.  When VSS is included in the effluent COD, 

removals were 89 % and 77 % for the SBR and the CMAS, respectively.  The CMAS 

reactor, however, was not equipped with a weir or scum removal system so that any 

floating material was released in the effluent and would degrade the lab-scale 

performance vis-à-vis field performance.  In contrast, wastage and effluent from the SBR 
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were pumped from well below the surface and consequently excluded any floating 

material.  Another important difference between the reactors was the provision of a 

separate clarifier for the CMAS.  While both the SBR and the CMAS had identical 

reaction tanks, with a surface area of approximately 780 mm2, the clarifier in the CMAS 

was only 380 mm2.  

 It should be noted that the differences in effluent solids concentrations between 

the CMAS and SBR and their overall settling performance could possibly be attributed to 

the variations in the laboratory clarification processes of each reactor.  The SBR was 

allowed to settle for approximately 1 hr prior to decanting the effluent.  The CMAS 

settling time was controlled by the flow rate and sizing of the clarifier.  The CMAS 

clarifier was 3 L, and although the flow through the clarifier varied slightly based on 

wastage flows drawn from the reactor, it averaged 27.4 L·d-1.  This results in an average 

hydraulic residence time of 2.6 h in the clarifier.  However, when you correct for the fact 

that the pumps only ran for approximately 14 min·h-1, the resulting peak flow rate is 

approximately 115.7 L·d-1 and the hydraulic residence time during periods of flow then 

becomes 0.6 h.  The significantly higher flow rates through the CMAS clarifier and the 

resulting lower hydraulic residence times could have been a significant factor in the 

development of floc structures different than those of the SBR.  In effect, the overflow 

rate of the clarifier was much higher than from the SBR.  These factors could potentially 

explain, in part the difference in effluent VSS and total effluent COD between the two 

reactor configurations. 

  



www.manaraa.com

   90

T
ab

le
 4

.1
 

R
ea

ct
or

 p
er

fo
rm

an
ce

 p
ar

am
et

er
s.

 

 
R

ea
ct

or
 

P
ar

am
et

er
 

U
ni

ts
 

P
er

io
d 

1 
P

er
io

d 
2 

P
er

io
d 

3 
O

ve
ra

ll
 

S
ig

ni
fi

ca
nt

 
D

if
fe

re
nc

ea 

S
B

R
 

M
L

V
S

S
 

m
g·

L
-1

 
27

49
 ±

 5
22

31
65

 ±
 3

35
 

44
80

 ±
 9

82
 

34
75

 ±
 1

02
6

2,
3;

 Y
1,

Y
2,

Y
3;

 +
 

V
SS

ef
f 

m
g·

L
-1

 
42

 ±
 4

7 
23

 ±
 7

 
31

 ±
 1

7 
33

 ±
 3

1 
Y

2,
Y

3;
 +

 

C
O

D
 R

em
ov

al
 

%
 

94
 ±

 1
 

95
 ±

 1
 

97
 ±

 2
 

95
 ±

 2
 

2,
3;

Y
3;

 +
 

S
V

I 
m

L
·g

-1
 

66
 ±

 2
0 

10
4 

± 
28

 
84

 ±
 2

4 
83

 ±
 2

7 
1,

2;
 Y

1,
Y

2,
Y

3;
 +

 

IS
V

 
m

·s
-1

 
0.

00
09

4 
± 

0.
00

04
3 

0.
00

03
2 

± 
0.

00
01

8 
0.

00
02

4 
± 

0.
00

01
3 

0.
00

05
3 

± 
0.

00
04

3 
1,

2;
 Y

1,
Y

2,
Y

3;
 +

 

C
M

A
S

 

M
L

V
S

S
 

m
g·

L
-1

 
20

27
 ±

 2
48

 
19

70
 ±

 3
59

 
28

40
 ±

 5
17

 
23

01
 ±

 5
57

 
2,

3;
 Y

1,
Y

2,
Y

3;
 +

 

V
SS

ef
f 

m
g·

L
-1

 
82

 ±
 4

5 
88

 ±
 1

7 
72

 ±
 2

1 
80

 ±
 3

1 
Y

2,
Y

3;
 +

 

C
O

D
 R

em
ov

al
 

%
 

94
 ±

 2
 

93
 ±

 2
 

92
 ±

 2
 

93
 ±

 2
 

Y
2;

 +
 

S
V

I 
m

L
·g

-1
 

34
 ±

 8
 

38
 ±

 5
 

56
 ±

 1
4 

43
 ±

 1
4 

2;
 Y

1,
Y

2,
Y

3;
 +

 

IS
V

 
m

·s
-1

 
0.

00
17

2 
± 

0.
00

01
2 

0.
00

14
7 

± 
0.

00
02

4 
0.

00
10

9 
± 

0.
00

04
0 

0.
00

14
3 

± 
0.

00
03

9 
2,

3;
 Y

1,
Y

2,
Y

3;
 +

 

a  1
, 

2,
 a

nd
 3

 i
nd

ic
at

e 
a 

st
at

is
ti

ca
ll

y 
si

gn
if

ic
an

t 
di

ff
er

en
ce

 (
α 

<
 0

.0
5)

 b
et

w
ee

n 
P

1 
an

d 
P

2,
 P

1 
an

d 
P

3,
 a

nd
 P

2 
an

d 
P

3,
 

re
sp

ec
ti

ve
ly

. Y
1,

 Y
2,

 a
nd

 Y
3 

in
di

ca
te

 a
 s

ig
ni

fi
ca

nt
 d

if
fe

re
nc

e 
be

tw
ee

n 
th

e 
tw

o 
re

ac
to

rs
 f

or
 P

1,
 P

2 
an

d 
P

3,
 r

es
pe

ct
iv

el
y.

  
+

 in
di

ca
te

s 
a 

si
gn

if
ic

an
t d

if
fe

re
nc

e 
in

 th
e 

ov
er

al
l a

ve
ra

ge
s 

be
tw

ee
n 

th
e 

tw
o 

re
ac

to
rs

 d
ur

in
g 

th
e 

ex
pe

ri
m

en
t. 



www.manaraa.com

 

91 

 Although the SRT was the same for both reactors, the MLVSS in the SBR was 

significantly higher than in the CMAS over the duration of the project (Figure 4.1).  

Throughout the project, the CMAS had a lower SVI and higher ISV compared to the SBR 

(Figure 4.2); these differences between the reactors were statistically significant in all 

three operational periods (Table 4.1).  It is also evident that the SBR and CMAS respond 

differently to the variations in the reactor operational parameters.  For the SBR, the ISV 

dropped rapidly after it entered P2, and then it remained somewhat consistent throughout 

the remainder of the experiment.  Hence, the ISV during P2 and P3 did not differ 

significantly from one another, but were both significantly lower than in P1.  The CMAS 

did exhibit an apparent trend towards lower ISV as the project progressed, however the 

change was much less pronounced and only showed a significant difference after the SRT 

was changed to 10 d.  In reviewing the SVI data, the SBR has a higher SVI once the 

SOCs are incorporated, while the CMAS displayed a more consistent SVI for the 

duration of the project.  The effluent VSS did not exhibit a statistically significant 

difference as a result of the variations in operational conditions of either reactor but did 

differ between reactors once SOCs were introduced.  The only significant change in 

soluble COD removal occurred when the SRT was increased to 10 d, which resulted in a 

decreased effluent COD concentration from the SBR (Figure 4.1).   
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Figure 4.1 Solids concentrations and soluble COD removal percentage as a function 
 of time and separated by reactor type.  SBR = +, CMAS = ◊. 
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Figure 4.2 Settling parameters as a function of time and separated by reactor.     
 SBR =  +, CMAS = ◊. 
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 The effluent SOC concentrations are presented in Figure 4.3.  The effluent results 

for acrylonitrile, chlorobenzene, and phenol were compared to the daily maximum limits 

for each.  These limits were 242 µg·L-1, 28 µg·L-1, and 26 µg·L-1 for acrylonitrile, 

chlorobenzene, and phenol, respectively, as presented in 40 CFR 414 based on the best 

available technology (BAT) limits.  The USEPA currently does not provide effluent 

regulations for MTBE, but numerous states have effluent guidelines that are in the 101-

102 µg·L-1 range.  For this comparison, a value of 100 µg·L-1 was taken as an acceptable 

level of treatment to evaluate the removal of MTBE.  As Figure 4.3 indicates, phenol was 

effectively removed from both reactors, below the detection limit, after approximately 2 

SRTs. The other SOCs had varying degrees of removal.  Chlorobenzene was removed to 

levels below the BAT limit in the SBR in 97% of the samples taken and in all samples 

taken during P3.  In the CMAS, chlorobenzene was removed below the BAT limit in only 

71% of the samples taken, however in P3 the removal was below the BAT limit in all but 

one sample which was taken during the first week of the transition from 5d to 10d SRT.  

Acrylonitrile was not effectively removed by CMAS with only 16% of samples tested 

showing removal below the BAT limit.  The SBR was moderately successful in the 

removal of acrylonitrile, providing removal below the BAT limit in 61% of the samples 

analyzed.  Additionally, the SBR showed improved removal capabilities when the SRT 

was increased to 10d.  MTBE was not removed successfully by either reactor 

configuration, with the effluent concentrations being below the established limit in only 

6% and 25% of the samples tested for the CMAS and SBR, respectively.  In the case of 

all chemicals, the SBR met the established limits more often than the CMAS. 
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 The effluent concentration data does indicate that the increase in SRT did result in 

more consistent removal of the SOCs, however this was more evident in the SBR than the 

CMAS.  This reliance on a higher retention time for removal could suggest that the 

higher sludge age is required to promote the growth of slower-growing organisms 

responsible for SOC removal, which is similar to the proven effects of SRT on the growth 

of autotrophic organisms in ammonia nitrification processes.  However, in the case of 

MTBE, the concentration originally decreased and then begin to rise back to the 5d SRT 

concentration levels.  This phenomenon could possibly be explained by sorption 

equilibrium processes.  The increased MLVSS available in the reactor with a 10d SRT 

would initially would facilitate additional sorption, but over time the newly available 

sorption surface area would become saturated causing the excess MTBE to remain in 

solution. 

 

4.2 Determination of Kinetic Parameters for Biogenic Substrate 

 For the biogenic substrates, the kinetic parameters of the typical Monod model 

were estimated using the aforementioned methodology for each reactor, primarily 

consisting of linear regression for the CMAS reactor and numerical approximation using 

4th order Runge-Kutta for the SBR.  For the CMAS, the resulting plot of the inverse of 

the SRT versus the measured utilization rate is presented in Figure 4.4.  The linear 

regression of this plot results in an estimated yield coefficient of 0.265 mgX·mgS-1 and a 

decay coefficient of -0.0052 d-1 for the CMAS reactor.  The fit of the data resulted in a 

coefficient of determination of 0.69. 
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Figure 4.4 Determination of yield coefficient and decay coefficient for CMAS. 

 

Once the Y and b were determined, the inverse of Umeas versus the inverse of the 

effluent COD concentration was plotted to approximate the remaining kinetic parameters, 

µm and Ks.  Figure 4.5 illustrates the results of this plot.  Since the COD removal for the 

CMAS was fairly consistent with a standard deviation of 2 percent, the plot in Figure 4.5 

resulted in clustering of the data over a small range.  Therefore, the resulting R2 value for 

the linear fit was 0.01.  From the curve-fit, k was found to be 0.764 mg·(mg·d)-1, which 

when multiplied by Y gives a µm value of 0.20 d-1.  Multiplying the slope of the line by 

the k value gives an approximation of Ks of 3.41 mg·L-1.  In an attempt to produce a 

better fit of the data a histogram was generated from the COD effluent data in bins of 10 

mg·L-1 effluent COD (Figure 4.6).  Once the data was grouped, the average effluent COD 

and average Umeas were calculated for each bin.  The inverse of the resulting data was 

replotted and linear regression was again applied.  As the results in Figure 4.7 indicate, 

the fit is improved with an R2 of 0.40 with minimal changes in the values of µm and Ks, 

0.22 d-1 and 3.58 mg·L-1, respectively.   
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Figure 4.5 Plot used to determine µm and Ks using the full data set.  
 

 

 

 

Figure 4.6 Histogram of effluent COD data with 10 mg∙L-1 bins. 
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Figure 4.7 Plot used to determine µm and Ks using the average of the histogram bins. 
 
 

 As indicated in the methodology, in order to estimate the kinetic parameters 

associated with the biogenic substrate removal in the SBR the 4th order Runge-Kutta 

method was used to minimize the objective function presented as Eq. 3-19.  A total of 

158 data sets were used in this analysis.  Although there were numerous data sets used, 

the lack of time-concentration data throughout the process does present cause for caution 

in utilizing kinetic parameter estimates developed with this method, in that other 

combinations of the parameters could potentially result in a similar fit to the data when 

only an initial and final value are used.  However, using the given methodology does 

allow for the estimation of descriptive parameters specific to this reactor to serve as a 

basis for comparison to the CMAS system.  For the SBR, the yield coefficient was found 

to be 0.414 mgX·mgS-1, the decay coefficient was estimated to be 0.0364 d-1, µm was 4.5 

d-1, and the half saturation constant, Ks, was estimated to be 1906 mg·L-1.  The evaluation 

of the fit of the data was estimated using the following calculations based on the given 

objective function: 
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Using this approach, the R2 was calculated to be 0.066 which indicates a 

relatively poor approximation.  For the individual components, the calculated R2-values 

were determined to be 0.998 and -0.776, for X and S respectively.  Since this goodness of 

fit is based on a comparison of model predictions to measured data with a non-linear 

model, the negative R2 value is possible but indicates that the average of the S data 

potentially gives a better approximation than the predictions of the model.  The average 

difference between Xmeas and Xcalc over the 158 data sets was approximately 27 mg·L-1 

while the average difference for the effluent COD was 18 mg·L-1 which further illustrates 

the better fit of the biomass data compared to the COD data when considering the order 

of magnitude difference between measured S and X data.  However, as Figure 4.8 

indicates, the model does have the potential to provide a reasonable prediction of the 

measured data with selected data sets, such as this example with Xmeas = 2177 mg·L-1 and 

Xcalc = 2179 mg·L-1, and Smeas = 35.3 mg·L-1 and Scalc = 33.6 mg·L-1.  Figure 4.9 is 



www.manaraa.com

 

101 

provided to illustrate the fit by comparing the predicted values plotted as a function of the 

measured values to a perfect fit, indicated by a 45º line.  The figure more clearly reveals 

what is indicated by the calculated r2 values for S and X individually, i.e. the X-fit is 

much more accurate than the S-fit for predicting the concentrations following the react 

period.  From these plots it is apparent that although the objective function was 

normalized based on the averages of each parameter, the fit was still controlled by the 

biomass concentration. 

 

 

 

Figure 4.8 Runge-Kutta approximation plotted with measured data points for selected 
data set.  x = measured data, --- = S model, and ___

 = X model. 
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Figure 4.9 Scatter diagrams of measured and predicted concentrations using the 
Runge-Kutta approximations for biomass and substrate.  ◊ = 
concentrations, --- = perfect fit (1:1 slope). 

 
 
 

Table 4.2 presents a recap of the estimated kinetic parameters for both reactor 

systems.  The resulting values indicate a significant difference for the estimated kinetic 

parameters between reactors.  With the exception of the yield coefficient, the kinetic 

parameters differ between reactors by almost one order of magnitude for the decay 

coefficient up to nearly three orders of magnitude for the half-saturation constant. The 

difference of the kinetic parameters between reactors could be a function of the high 

COD concentration gradient present in the SBR over the react period as compared to the 

consistently low concentration found in the CMAS, which are inherent to the respective 

reactor flow regimes.  The Ks values for the SBR were significantly higher than those for 

the CMAS, and although presented under different circumstances, this finding is 

consistent with those of Magbanua et al. (2003) who, in comparing extant and intrinsic 

parameter estimates, determined that KS was generally higher for intrinsic tests in which 

the biomass are exposed to a much higher substrate concentration than in extant tests.  

Blok and Struys (1996) similarly found in an investigation of kinetic parameters for 
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numerous substances that apparent KS values have a tendency to decrease with lower 

substrate concentrations.   

   

Table 4.2 

Estimated kinetic parameters for biogenic substrate removal. 

Parameter SBR CMAS 

µm (d-1) 4.5 0.2 

Ks (mg·L-1) 1906 3.6 

Y (mgX·mgS-1) 0.414 0.265 

b (d-1) 0.03640 0.0052 

 
 

Literature suggests that it is difficult to obtain reliable kinetic parameters in a 

batch system when the initial substrate is significantly higher than the effective KS 

(Kovarova-Kovar & Egli, 1998).  These authors claim that in these instances changes in 

KS have little impact on the curve fit, and KS can therefore differ by several orders of 

magnitude.  Grady et al. (1996) recognized the variability in literature reported kinetic 

parameters and suggest that the history of the biomass is one of the key influences on the 

kinetic parameter estimates.  The authors report that steady-state operation of CMAS 

reactors can lead to the displacement of low affinity organisms by higher affinity 

organisms and further postulate that over long periods of continuous reactor performance 

the KS and µm will decrease.  This concept supports the findings of the current research, 

in that, long-term continuous operation of the CMAS should result in lower kinetic 

parameters when compared to an SBR that continually experiences a cyclic substrate 

concentration gradient. 
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4.3 Determination of Kinetic Parameters for SOCs 

 The determination of SOC kinetic parameters presents the added difficulty 

associated with the estimation of substrate removal via abiotic processes, including 

adsorption and volatilization.  The first step was to estimate the important physical 

properties of the SOCs necessary for calculating the abiotic removal.  These include the 

partition coefficient, kp, in order to estimate the removal via adsorption and the 

diffusivity and KLa in order to estimate the removal via volatilization.  The KLa values 

were determined based on the curve fitting methods described in Section 3.2.1.3 for each 

reactor.  The KLa values were estimated from 12 separate DO profiles for the SBR and 11 

separate DO profiles for the CMAS over the five month period from October 2008 to 

February 2009.  The KLa for oxygen transfer was found to be 0.41 ± 0.16 min-1
 in the 

SBR and 0.62 ± 0.14 min-1 in the CMAS.  Table 4.3 provides select chemical properties 

for the SOCs used in this study.  Inferring from the provided properties and the KLa 

values observed in the reactors, it is evident that the SOCs have a greater propensity to 

volatilize from the CMAS reactor, with acrylonitrile being the most susceptible.  From a 

cursory review of the chemicals selected, chlorobenzene has a significantly higher 

likelihood to be affected by adsorption to the biomass.  One interesting finding from the 

provided properties is that based on the Henry’s Law coefficient chlorobenzene would 

appear to be the most likely to volatilize from the system, but the diffusivity and resulting 

KLa for chlorobenzene estimated in this study make it the least likely to be removed via 

volatilization, primarily due to its higher molar volume. 

The appropriate properties of the selected SOCs were used in the CMAS to 

estimate the α coefficient and the resulting γ coefficient.  Since the γ coefficient is a 
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function of the COD removal, as well as the MLSS concentration, γ varies over the 

course of the experimental period.  Table 4.4 lists the average, standard deviation, and 

range for the α and γ coefficients for each of the SOCs.  However, since phenol was not 

detected in the effluent, the apparent removal is 100% and as such the γ coefficient for 

this SOC approaches zero.  Therefore, the resulting phenol measurements in the 

experiment do not allow for the estimation of kinetic parameters for this SOC applying 

the technique used in this study. 
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 Table 4.4 

Estimated abiotic removal coefficients for the test SOCs. 

  Acrylonitrile Chlorobenzene MTBE Phenol 

αv 226.6 160.1 165.3 161.7 

αs 

Avg 1.0 x 10-4 3.9 x 10-2 5.0 x 10-4 1.7 x 10-3 

Min 3.7 x 10-5 2.6 x 10-2 1.8 x 10-4 6.1 x 10-4 

Max 1.6 x 10-4 5.9 x 10-2 8.0 x 10-4 2.6 x 10-3 

std dev 2.9 x 10-5 1.1 x 10-2 1.4 x 10-4 4.6 x 10-4 

α 

Avg 226.6 160.1 165.3 161.7 

Min 226.6 160.2 165.3 161.7 

Max 226.6 160.1 165.3 161.7 

std dev 2.9 x 10-5 1.1 x 10-2 1.4 x 10-4 4.6 x 10-4 

γ 

Avg 61 0.24 7 N/A 

Min 4 0.17 0.1 N/A 

Max 289 0.41 14 N/A 

std dev 67 0.08 3.3 N/A 
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As Table 4.4 indicates, the effluent SOC concentrations found in this experiment 

and alpha values result in gamma values greater than 1 for MTBE and acrylonitrile.  For 

MTBE, only two data points resulted in gamma values less than one, and acrylonitrile 

had none.  The implications of this finding are that the theoretical removal expected by 

abiotic mechanisms exceeds the measured overall removal achieved by the CMAS 

system.  The ineffectiveness of the CMAS to remove MTBE or acrylonitrile made the 

given methodology for kinetic parameter estimation unsuitable for the data obtained.   

Due to the inability to quantify the effluent phenol concentration and the ineffectiveness 

of MTBE and acrylonitrile removal, of the four SOCs included in this study unfortunately 

only chlorobenzene had sufficient data available to approximate kinetic parameters using 

the methodology and setup selected in this research.  Although the γ values were either 

higher than physically permitted or undetermined, it can be inferred from the high αv:α 

ratios indicated in Table 4.4 that volatilization accounts for the majority of the abiotic 

removal, greater than 99.9%,  of the SOCs in this study.  This finding is consistent with 

other researchers who found that the ratio of removal via volatilization to adsorption was 

high for volatile and semi-volatile SOCs (Grady et al., 1997).  

 For the estimation of chlorobenzene kinetic parameters, the appropriate variables 

are plotted in Figure 4.10.  Through linear regression of the given plot, Y and b are 

estimated to be 1.21 mgXa·mgSchloro
-1 and -0.14 d-1, respectively, for the removal of 

chlorobenzene.  The r2 value was found to be 0.76.  However, this yield coefficient 

appears to be unpractical in that it suggests that the competent biomass increase is greater 

than the amount of substrate being metabolized.  Although this could stem from 

numerous sources of error, one possibility is an inaccurate estimation of the competent 
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biomass. It could also potentially be related to the SRT calculations which assume that 

the fraction of competent biomass is constant throughout the system, including the 

wastage and effluent streams. 

 

 

Figure 4.10 Plot used to determine Y and b for chlorobenzene.  
 
 

 Figure 4.11 illustrates the experimental relationship between the inverse of Umeas 

and the inverse of the effluent chlorobenzene concentration in the CMAS reactor.  The 

resulting figure reveals a r2 value for the chlorobenzene data of 0.07.  Since the yield 

coefficient did not appear to be realistic, this suggests the data does not fully support the 

estimation of the kinetic parameters specific to chlorobenzene.  Using Figure 4.11 and 

completing the exercise, however, provides an estimate of .32 d-1 and 2 µg·L-1, for µm 

and KS respectively.  Ultimately, from this analysis it becomes evident that the data 

collected for the SOC specific kinetic parameter estimations was insufficient in the 

CMAS reactor for determination of realistic values for any of the test SOCs used in this 

study. 
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Figure 4.11 Plot used to determine µm and KS for chlorobenzene.  
 
 
 
 Due to the problems encountered in the estimation of kinetic parameters for the 

SOCs in the CMAS reactor, the first step in the estimation of SBR kinetic parameters was 

to determine if the effluent SOC data would support parameter estimation with the 

calculated KLa values for the SOCs, i.e. is the effluent SOC data low enough that the 

theoretical removal via abiotic processes is less than the overall removal measured in the 

SBR.  In order to test this condition, the biodegradation was assumed to be zero thus Eq. 

3-28 reduces to a first order equation, Eq. 4-6, with respect to S: 

  
vol

TP

SOC r
XkVdt

dS

)1(

1




 
(4-6) 

This equation can further be reduced and solved analytically resulting in Eq. 4-7: 

  

taK
Xk

O

L
TPeSS






 )1(

1

 
(4-7) 

With the assumed constant XT and the calculated KLa and kP values, the theoretical SOC 

concentration can be determined as a function of time when assuming only abiotic 

removal occurs.  Similar to the results from the CMAS reactor, the resulting data for the 
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SBR suggests that the theoretical abiotic removal rates are significant when compared to 

the measured overall removal rates for the reactor.  For all SOCs in the study, when only 

considering abiotic removal, the resulting theoretical SOC concentrations after the 300 

min react period were approaching zero, ranging from 10-7 mg·L-1 for chlorobenzene to 

10-27 mg·L-1
 for acrylonitrile.  As with the CMAS reactor, this indicates that the measured 

effluent concentrations are higher than the concentrations expected to remain if no 

microbial conversion occurred.  Thus, it is not possible to estimate the biological removal 

component with the given effluent concentration data.  In the case of both the CMAS and 

the SBR, for any reasonable estimates of SOC-specific kinetic parameters to be obtained 

appropriate time-concentration data are required as opposed to steady-state or effluent 

only data. 

 

4.4 Effects of Reactor Conditions on Floc Morphology 

 The mean morphological parameters are presented in Table 4.5.  The size 

parameters (Figure 4.12) and the shape parameters of the AS flocs (Figure 4.13) 

responded differently to the changes imparted on the system.  For the SBR, the size 

parameters increased significantly once the SOCs were incorporated into the feed but 

returned to near their original values when the SRT was increased to 10 d.  One possible 

reason for this increase in size could be an attempt by the AS flocs to protect themselves 

from the harmful SOCs by creating a sacrificial exterior buffer to reduce transfer of the 

SOCs into the interior protected interior region.  The CMAS, however, exhibited no 

significant variation in size parameters over the duration of the project.  The CMAS did 

undergo significant changes in the shape parameters after the SRT was increased to 10 d.  
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The shape parameters in the CMAS during P3 became more similar to those in the SBR, 

which remained stable throughout the project.   In comparing the overall values between 

the two reactors over the duration of the project, the SBR and CMAS presented a 

significant difference in size and shape parameters (Table 4.5).  

Each reactor responded differently when SOCs were added as indicated through 

comparing period means in Table 4.1 and Table 4.5.  In further analyzing the effects by 

correlating the size and shape parameters to the specific effluent SOC concentrations, 

Table 4.6 reveals that both reactors demonstrated some correlations with the effluent 

chemical concentrations.  Phenol was omitted from the statistical analysis in both reactors 

due to the limited effluent data.  The effluent concentration of both acrylonitrile and 

chlorobenzene displayed a significant positive correlation with the size parameters in the 

SBR, while chlorobenzene had a significant positive correlation with the FF and RD and 

a negative correlation with the AR in the CMAS.  This suggests the presence of the 

selected SOCs resulted in larger flocs in the SBR which demonstrated flocculent settling 

during visual observation of the settling test, and the particles in the CMAS, which 

experienced more discrete settling, approached more circular particle shapes with 

increased SOC concentrations.  The reactor performance was also affected by the 

presence of the SOCs.  Both reactors showed a negative correlation between the SRT and 

the effluent concentration of chlorobenzene and acrylonitrile suggesting that an increased 

SRT may result in better removal of the toxic SOCs; however, the correlation was only 

statistically significant in the SBR reactor.  This could also be indicated by the overall 

increase in soluble COD removal when the SRT was increased in P3, as demonstrated by 

the significant difference between P3 and the other periods in Table 4.1 for the SBR. 
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Figure 4.12 Size parameters as a function of time.  SBR = +, CMAS = ◊. 
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Figure 4.13 Shape parameters as a function of time.  SBR = +,CMAS = ◊. 
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 Additionally, this research demonstrated that the MLVSS increased significantly 

in both reactors when the SRT transitioned from 5 d to 10 d, which corroborates other 

research conclusions that the suspended solids concentration typically increases with 

increasing SRT (Laera et al., 2007).  In the CMAS, although a significant change in mean 

floc size as a function of SRT was not demonstrated in comparison between the 

individual periods, the CMAS did exhibit a significant positive correlation between the 

mean floc size and both the MLVSS and SRT throughout the experiment (Table 4.7).  

The floc size did not directly correlate in the SBR with either SRT or solids 

concentration, however the correlation of floc size and MLVSS is further illustrated by 

the comparison of the SBR to the CMAS.  The SBR resulted in a significantly higher 

MLVSS concentration compared to the CMAS and correspondingly exhibited a larger 

mean floc size.  This correlation has been noted in other works (Chaignon et al., 2002) 

which reported that floc size linearly correlated with suspended solids content for lower 

sludge concentrations and concluded that floc coagulation increases significantly with 

increasing AS concentrations.  Other researchers have also concluded that there is a 

positive linear correlation between suspended solids concentration and mean floc size 

(Liwarska-Bizukojc & Bizukojc, 2005; Grijspeerdt & Verstraete, 1997). 



www.manaraa.com

   118

T
ab

le
 4

.7
 

P
er

fo
rm

an
ce

 p
ar

am
et

er
s 

– 
fl

oc
 m

or
ph

ol
og

y 
co

rr
el

at
io

n 
re

su
lt

s.
 

 
 

S
B

R
 

C
M

A
S

 
 

M
L

V
SS

 
V

SS
ef

f 
SR

T
 

SV
I 

IS
V

 
M

L
V

SS
 

V
SS

ef
f 

S
R

T
 

S
V

I 
IS

V
 

A
 

0.
20

 
-0

.4
1+

+
 

-0
.0

6 
0.

65
+

+
+

 
-0

.3
6+

 
0.

45
+

+
 

-0
.2

9+
 

0.
45

+
+
 

0.
35

+
 

-0
.3

1+
 

D
e 

0.
11

 
-0

.4
2+

+
 

-0
.0

1 
0.

62
+

+
+
 

-0
.2

7 
0.

28
 

-0
.2

9+
 

0.
28

 
0.

11
 

-0
.1

6 

F
F

 
0.

16
 

0.
09

 
0.

04
 

-0
.1

0 
-0

.2
5 

-0
.6

4+
+

+
 

0.
16

 
-0

.6
8+

+
+

-0
.7

6+
+

+
0.

58
+

+
+
 

A
R

 
0.

18
 

0.
11

 
0.

20
 

0.
01

 
-0

.1
0 

0.
70

+
+

+
 

-0
.1

9 
0.

68
+

+
+
 

0.
77

+
+

+
 

-0
.6

1+
+

+

R
D

 
-0

.0
7 

-0
.1

3 
-0

.3
2+

 
0.

17
 

-0
.0

9 
-0

.7
2+

+
+
 

0.
18

 
-0

.7
4+

+
+

-0
.8

4+
+

+
0.

65
+

+
+
 

+
 p

 <
 0

.0
5;

 +
+

  <
 0

.0
05

; +
+

+
 p

 <
 0

.0
00

1.
 



www.manaraa.com

 

119 

4.5 Correlation of Floc Morphology and Settling Performance 

 The Spearman coefficient was used on each reactor separately to assess the 

correlation between morphological parameters and sludge settleability because, due to its 

non-parametric nature, it is a more robust indicator than the Pearson coefficient of 

correlation between variables of widely differing magnitudes and scales.  The correlation 

matrices (Table 4.7) indicate that the parameters most strongly correlated to and thus 

potential predictors of sludge settleability differed between the SBR and the CMAS 

reactor.  For the SBR, the SVI was most significantly correlated with the size parameters 

A and De, while the CMAS exhibited a stronger correlation between settling performance 

and the shape parameters. 

 In order to determine if this observation might be consistent with mechanistic 

considerations, we considered models for the discrete particle settling.  Biofloc particles 

are likely to undergo flocculent settling and hindered settling, but discrete settling may 

prevail within the clarification zone of the sedimentation tank.  A number of 

mathematically complex empirically-derived models have been proposed to describe the 

relationship between size, shape and settling velocity of non-spherical particles in a fluid 

(Concha & Barrientos, 1986; Halder & Levenespiel, 1989; Swamee & Ojha, 1989; 

Bernhardt, 2004), but Crites and Tchobanoglous (1998) provide a relatively simple 

formulation, valid when NRe < 104: 

  
DC

Dsg

3

)1(4
v2 

   
(4-8) 

  
1

2
Re Re

24 3
0.34DC

N N
  
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
v

Re

D
N   (4-10) 

where v is the terminal settling velocity of the particle; g is the gravitational acceleration, 

9.8 m∙s-2, D is the diameter of a sphere with the same volume of the particle; s is the 

specific gravity of the particle; CD is the drag coefficient; NRe is the Reynolds number 

calculated at the terminal settling velocity; φ is the sphericity of the particle; and ν is the 

kinetic viscosity of the fluid. The sphericity is defined as the ratio of the surface area of a 

sphere of equivalent volume to the surface area of the particle, 0 < φ < 1.0. D and φ could 

be considered as the three-dimensional analogues of De and RD, respectively, quantified 

from the floc images. Through implicit differentiation, the following sensitivity equations 

can be obtained: 
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The sensitivity equations describe how a relative change in particle size (∂D/D) or shape 

(∂φ/φ) results in an absolute (∂v, equations 4-11a, 4-12a) or relative (∂v/v), equations 4-

11b, 4-12b) change in settling velocity. Solution of these equations (Figure 4.14) under 

conditions typical of activated sludge (20 oC, s = 1.04) suggests that this set of equations 

for the discrete settling of non-spherical particles supports the observation that particle 

shape becomes a less important factor than particle size as the particle size increases. 
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Specifically, the lines depicting D(∂v/∂D) and φ(∂v/∂φ) are parallel at low particle size 

and begin to diverge at higher particle size (Figure 4.14b); similar behavior is observed 

for (D/v)·(∂v/∂D) and (φ/v)·(∂v/∂φ) (Figure 4.14c).   This divergence between the 

effects of D and φ occurs at a smaller diameter for particles that are spherical or nearly 

so, i.e., the effect of shape is greatest for particles that deviate the farthest from a perfect 

sphere. Furthermore, the divergence appears to occur, regardless of sphericity, at a 

Reynolds number between 1 and 10, the lower range of the transition region (1 < NRe < 

2000) between laminar and fully turbulent settling.  In the case of spherical particles, the 

divergence occurs at the extreme upper range of equivalent diameters observed in the floc 

images.  

 The foregoing model, it should be recognized, applies to particles that undergo 

discrete settling and does not take into account the acceleration of the settling velocity if 

particle flocculation occurs; neither does the model consider the reduction in 

hydrodynamic drag due to floc permeability (Lee et al., 1996).  Nevertheless, the model 

was qualitatively consistent with observed settling behavior.  The flocs in the SBR were 

significantly larger than in the CMAS, which resulted in the settling performance of the 

SBR being more dependent on size and correlating poorly with the shape parameters.  

The smaller CMAS particles exhibited a strong correlation between the settling 

performance and the shape parameters.  Although the CMAS particles were significantly 

smaller, they actually exhibited a higher settling velocity and a lower SVI, due to their 

more spherical shape.  
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Figure 4.14 Discrete settling behavior for non-spherical particles: (a) terminal 
 settling velocity and Reynolds number; and (b) absolute and (c) relative 
 sensitivity of terminal settling velocity to particle diameter and 
 sphericity, as a function of the particle diameter.  The shaded area 
 corresponds to the observed range of equivalent diameters of activated 
 sludge floc particles. 
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 Contrary to the indications of the SVI, the amount of VSS lost in the CMAS was 

much higher than that of the SBR.  The SBR demonstrated a significant negative 

correlation between the mean floc size and the effluent VSS.  From direct laboratory 

observations, including the photomicrographic images and visual examination of the 

sludge during the SVI analysis, this was most likely due to the fact that the CMAS sludge 

had more of a granular appearance and would settle more discretely leaving a more turbid 

supernatant, while the SBR sludge behaved more consistently with zone settling.  Thus, 

the SBR sludge would create a blanket effect, trapping particles as it settled.  This blanket 

effect could be the primary factor that resulted in the larger sizes, while the more discrete 

particles of the CMAS resulted in the more spherical shape values.  As a result, the shape 

parameters would better correlate with the SVI for the CMAS, while the size parameters 

showed stronger correlations for the SBR, which is also supported by the particle settling 

theory analysis. 

 

4.6 Genetic Diversity Analysis Results 

 Some of the molecular techniques were established slightly before the 

standardization of the photomicrographic analysis techniques, and some samples taken 

prior to Day 0 of the settleability analysis were used in this evaluation.  Therefore, Day 0 

for the genetic diversity analysis is taken as the time when all required tests for this 

analysis were standardized.  As such, Period 1 (P1) actually includes 108 days prior to 

the incorporation of SOCs, Period 2 (P2) refers to days 109 to 182 when SOCs were 

present, and Period 3 (P3) refers to days 182 to 240 when the SRT was changed from 5d 

to 10d.  Prior to DGGE analysis, an agarose gel was run to confirm the presence of PCR 
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products.  Figure 4.15 provides a representative agarose gel image.  DGGE gels were 

then created and processed per the prescribed methods outlined previously.  Figure 4.16 

provides a representative DGGE gel image.  

 

 

    Figure 4.15 Sample agarose gel image.  S and C indicate samples taken from the 
 SBR or CMAS reactor, respectively.  The following number indicates 
 the sample day and the P1, P2, and P3 correspond to reactor periods 
 1,  2 and 3, respectively.  The SREF and CREF are the reference 
 samples that were used for standardizing the DGGE gels. 
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Figure 4.16 Sample DGGE gel image.  S indicates samples taken from the SBR.  The 
 following number indicates the sample day and the P1, P2, and P3 
 correspond to reactor periods 1, 2 and 3, respectively.  The SREF and 
 CREF are the reference samples that were used for standardizing the 
 DGGE gels. 
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changes in the reactor operational conditions.  In Figure 4.18, sample C114P2 was taken 

with SOCs present but grouped with the 5d samples without SOCs.  This anomaly was 

taken early in P2 when the community could have potentially been in a state of flux while 

acclimating to the presence of SOCs. 

 The resulting cluster analysis combining all six gels is presented in Figure 4.19.  

Although the combined dendrogram does not result in the same defined hierarchy 

illustrated by the individual reactor dendrograms, it does indicate that reactor 

configuration and reactor conditions both resulted in sub-clustering.  The separation 

between the sub-clusters is more defined during P1.  The hierarchy of the clustering 

indicates that the CMAS prior to the incorporation of SOCs is most unique and 

differentiated from the SBR and the other CMAS periods.  The SBR during P1 is also a 

primary sub-cluster that is separated from the samples taken with the SOCs present.  

Once the SOCs are incorporated, the samples from the SBR during P2 and P3 are sub-

grouped under the P3 CMAS samples, which are subsequently sub-grouped under the P2 

CMAS samples.  Samples C128P2 and C130P2 clustered within the SBR samples.  As 

the feed is modified, the AS community does undergo a transition and inter-reactor 

relationships appear to begin to develop.   
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Figure 4.17 SBR dendrogram.  S indicates samples taken from the SBR.  The 
 following number indicates the sample day and the P1, P2, and P3 
 correspond to reactor periods 1, 2 and 3, respectively. 
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 Figure 4.18 CMAS dendrogram.  C indicates samples taken from the CMAS.  
 The following number indicates the sample day and the P1, P2, and 
 P3 correspond to reactor periods 1, 2 and 3, respectively. 
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Figure 4.19 Combined 6-gel dendrogram.  C and S indicate samples taken from the 
 CMAS and SBR, respectively.  The following number indicates the 
 sample day and the P1, P2, and P3 correspond to reactor periods 1, 2, 
 and 3, respectively. 
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 To potentially reduce any bias caused by standardizing across six separate gels, 

composite gels were run for each reactor.  The composite gels included four samples 

from each reactor period taken just prior to transitioning to the next set of operational 

conditions, with the assumption that enough time had been provided for the AS 

community structure to stabilize.   Standardization was then performed on the two gels 

and the composite dendrogram produced (Figure 4.20).  The analysis of two combined 

gels indicates that the samples group primarily based on reactor configuration, but, 

similar to the findings with the six-gel dendrogram, both reactor configuration and 

operational conditions resulted in defined sub-clusters.  The samples from each reactor 

taken during P1 were the two clearest sub-groups, containing all four samples.  

Additionally, all four samples from P2 in the SBR grouped together.  However, the other 

samples taken with SOCs present showed several instances of crossover between the 

reactors.  Several samples from the SBR and the CMAS during P3 where closely linked 

in the hierarchal structure of the dendrogram, while samples from the CMAS during P2 

were split with two samples segregated with other CMAS samples while two samples 

appeared to be more closely associated with the SBR samples.  These anomalies indicate 

the transient nature of the AS community structure in response to external stimuli.  

Interestingly, in all the dendrograms produced, very few samples exhibited a significantly 

high similarity coefficient (> 95).  Even in some instances with samples taken as close as 

two days apart, the resulting similarity coefficient was very low, such as S233P3 and 

S235P3 in the 2-gel composite with a coefficient of approximately 30.  This further 

illustrates the dynamic, transient condition exhibited by AS communities, as pointed out 

by other researchers (Saikaly et al., 2005). 
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Figure 4.20 Composite 2-gel dendrogram.  C and S indicate samples taken from the 
 CMAS and SBR, respectively.  The following number indicates the 
 sample day and the P1, P2, and P3 correspond to reactor periods 1, 2, 
 and 3, respectively. 
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 Additional analysis was performed using the diversity index calculated for each 

lane in the six individual gels.  Diversity indices allow for quantitative analysis because a 

single numerical value can be derived for each sample, which can be correlated to other 

quantitative results.  In the case of this study, diversity indices were analyzed for each 

reactor period and compared to determine if there is a significant change in community 

diversity as a result of variations in the reactor operation.  Table 4.8 presents the averages 

and standard deviations of the diversity indices for each reactor.  In reviewing the 

resulting richness values, the CMAS community richness increased significantly after 

SOCs were incorporated into the feed.  The SBR responded similarly, however, the 

transition did not prove to be statistically significant.  The response of the Shannon and 

Simpson indices varied based on the reactor type, but the two variables behaved similarly 

to each other for a given reactor.  For the CMAS, both diversity indicators significantly 

increased, corresponding to an increase in genetic diversity in the reactor, from P1 to P2 

with the addition of SOCs, however they returned to pre-SOC levels once the SRT was 

increased to 10 d.  Diversity in the SBR did not change significantly until the SRT was 

increased to 10 d, at which time the diversity was significantly higher than the 5 d SRT 

with no SOCs present.   
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 In both reactors, if diversity is analyzed as a function only of presence or absence 

of SOCs, with no differentiation between 5 d and 10 d SRT, the diversity, as represented 

by both the Shannon and Simpson indices, is significantly higher after the addition of 

SOCs.  This is contrary to the finding of Bayle et al. (2009) who found that high mass 

loading of VOCs resulted in decreased bacterial diversity, which is the expected response 

of bacterial communities to toxic compounds.  High concentrations of recalcitrant toxic 

compounds are expected to inhibit populations unable to tolerate the chemicals and select 

populations capable of acclimating to the presence of the SOCs, which would result in a 

less diverse community.  However, in the study by Bayle et al. (2009) lower 

concentrations of SOCs resulted in an increase in diversity, and the authors suggest a 

critical concentration could exist, below which there is a potential for the enhancement of 

some select populations without significant detriment to the remaining populations.  

Another potential explanation of this increase in diversity accompanying the 

incorporation of SOCs could be that the inhibitory effects may be greatest on the 

organisms with the highest affinity for COD utilization, allowing for a more diverse 

community of slower growth organisms to develop.   

 In reviewing the evenness results, the reactor communities responded differently 

to the operational variations.  Based on the evenness values, the structure of the AS 

community in the SBR had a more even distribution of abundant populations at higher 

SRT, demonstrated by the significantly higher evenness in P3 with the 10 d SRT than 

either P1 or P2 with the 5 d SRT.  Other researchers have demonstrated varying results in 

the effects of SRT on community diversity.  Akarsubasi et al. (2009), utilizing similar 

DGGE methods, determined that sludge age had no effect on the evenness or richness of 
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the AS community.  Utilizing T-RFLP methods, the findings of Saikaly et al. (2005) are 

contrary to the SBR findings in the current study as they reported that a lower SRT 

resulted in greater evenness, as well as significantly higher Shannon and inverse Simpson 

diversity indices.  This result, although counterintuitive, is supported by the statistically 

significant decrease in the evenness of the CMAS between P2 and P3.  Other researchers 

have investigated the impact of SRT on activated sludge diversity and have presented a 

theory of oscillating population dominance among the AS community at lower SRTs, but 

competitive dominance becomes apparent at higher SRTs (Saikaly & Oerther, 2004).  

Although both reactors in the current study were controlled to maintain a specific SRT, 

the effective SRT in the SBR is actually lower than the CMAS when considering the 

amount of active reaction time in the react period.  In a 24 h period, the CMAS has 24 h 

of reactor operation, while the SBR has 20 h of reactor operation and 4 h of settling.  In 

comparison between the reactors for the full experimental period, the CMAS exhibited a 

significantly more diverse microbial community than the SBR when statistically 

comparing the Shannon and Simpson indices.  From an effective SRT standpoint, this 

follows popular environmental theory of competitive exclusion as SRT is increased 

(Saikaly & Oerther, 2004), but this finding is contrary to the results of Pholchan et al. 

(2010) who found the banding patterns for an SBR to be more diverse than for a CMAS.         

 Additional analysis was conducted to determine if correlations exist between the 

reactor performance parameters and the diversity indices using the Spearman rank 

coefficient.  The resulting correlation matrix is presented in Table 4.9.  The correlation 

matrices for each reactor differed in the parameters that showed significant correlation. 
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Table 4.9 

Spearman correlation matrices. 

 CMAS SBR 

Parameter H D’ E S H D’ E S 

MLVSS -0.06 -0.04 -0.27 0.16 0.37+ 0.41+ 0.50++ 0.20 

COD Removal -0.26 -0.34+ -0.06 -0.36+ 0.15 0.14 0.23 0.06 

SVI 0.18 0.18 -0.10 0.37+ 0.34+ 0.24 -0.02 0.47++ 

MTBE -0.11 -0.06 -0.17 0.00 -0.30 A -0.26 -0.12 

Acrylonitrile -0.14 -0.10 -0.03 -0.19 -0.03 0.01 0.07 -0.04 

Chlorobenzene 0.10 0.01 0.04 0.06 -0.28 -0.25 -0.07 -0.26 

+p < 0.05, ++p < 0.005.     
 
 
 
 The CMAS reactor exhibited a significant negative correlation between the COD 

removal and both the Simpson inverse and the richness.  This would indicate that the 

COD removal results were better, i.e. less COD released in the effluent, when the 

community was less diverse.  This finding supports the previously stated theory that 

SOCs allow for the growth of organisms with less affinity for COD utilization, and thus 

the greater diversity resulted in lower COD removals.  The SBR correlation results 

showed that a strong positive correlation existed between the mixed liquor suspended 

solids and all three diversity indices, which would suggest that a larger quantity of 

activated sludge results in a more diverse floc.  However, this relationship was not 

exhibited in the CMAS reactor.  The only result common to both reactors was the 

significant positive correlation between the SVI and the species richness.  A higher SVI, 

which is indicative of a poorer settling sludge, correlated to a more rich genetic profile.  

Phenol was omitted from the correlation analysis due to limited effluent data.  Of the 
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other three chemicals incorporated, only one correlation was found to be significant, 

which was a negative correlation between the inverse Simpson and the effluent MTBE 

concentration in the SBR.   
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CHAPTER V 

CONCLUSIONS 

 

 The primary focus of this study was to determine the effects of toxic SOCs on the 

AS community in different lab scale reactor configurations.  An additional modification 

during the experiment was an adjustment of the SRT, with the SOCs present, to monitor 

the response of the AS communities.  In an attempt to find a more real-time approach to 

assess the state of the AS community, a combination of microscopic and molecular 

analysis techniques were used, which are not typically applied to the wastewater 

treatment process.  IA has the potential to become a beneficial tool for assessing the 

performance of AS reactors.  This research demonstrated that IA of AS samples could 

provide valuable information about the size and shape of the AS flocs.  Floc size 

parameters appeared to be better predictors of settling performance in the sequencing 

batch reactor, whereas shape descriptors were more strongly correlated to the sludge 

settleability in the completely mixed system.  It was evident that floc morphology varied 

as a function of operational conditions and reactor configurations.  The type of manual IA 

demonstrated in this work was effective and could be completed in an equal or slightly 

shorter time period than the standard SVI, and it could reveal changes occurring at a 

microscopic level within the AS community.  As demonstrated, IA could also be utilized  
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to assess the effects of external factors on the AS community, such as the influence of 

SOCs in this study.   

 In practical applications, it would be much more effective to use an automated, 

inline sampling device that would capture and process the images on a more frequent or 

even a real-time basis, and then periodically collect and examine samples manually to 

verify the results.  Da Motta et al. (2001) reported the use of automated IA to detect 

filamentous bulking at a large scale municipal treatment plant and to detect pin flocs in 

an industrial treatment application.  The multiple morphological parameters obtained 

through IA provide much more physical information of the sludge and the AS flocs than 

the SVI and other standard sludge settleability analysis which could aid the evaluation of 

the condition of the AS.  Additionally, the correlation between the floc morphology 

descriptors and sludge settleability parameters suggests that IA has the potential to 

substitute for typical settling tests.  Mesquita et al. (2009) effectively utilized information 

obtained from IA to predict gross SVI values.   

DGGE analysis is a useful tool in quantifying the community structure of 

activated sludge flocs.  Dendrograms generated through this study indicated a shift in the 

activated sludge community as a result of adjusting the operational conditions of the 

reactor.  During the initial period with no variations, the banding patterns of samples 

from a particular reactor associated more closely to other samples from that reactor.  

Variations in operational conditions led to transient population dynamics within the 

system.  Although some of the findings in this study differed in many respects to the 

results of other researchers, this research does corroborate many of the core conclusions 

found by others, specifically that the microbial community structure varies as a function 



www.manaraa.com

 

140 

of reactor configuration and as a result of operational changes, but these relationships are 

not yet fully understood and the diversity of the microbial community and corresponding 

performance cannot be systematically controlled with the current level of understanding.  

However, further research in this area could provide possibilities for more advanced 

control of biological treatment systems that are systematically engineered to promote the 

growth of microbial populations specific to the removal of a particular contaminant or to 

perform to a specified level for a given treatment parameter of interest, or possibly to 

develop a diverse community capable of handling an array of influent constituents or 

operational conditions.   
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CHAPTER VI 

RECOMMENDATIONS AND FUTURE RESEARCH 

 

 The results of this study demonstrate the transient nature of the AS communities 

and further evidence the more in-depth understanding required to establish and control 

the desired engineered bioreactor conditions.  Both IA and DGGE analysis are 

technologies that have the capability of providing additional information about the AS 

floc conditions that could allow for more advanced process control.  IA has the potential 

for real-time analysis, but the process would need to be simplified and automated to 

allow for less sophisticated operator requirements.  Before IA could make the transition 

from a strict laboratory-based protocol to a more routine automated monitoring system, 

additional research in this area is needed to better define the relationships between floc 

morphology and performance and to establish the specific sample criteria necessary to 

provide the required floc information.   As aggregation dynamics continue to be a focus 

of research efforts to better understand complicated AS flocculation properties, physical 

AS floc properties obtained through microscopic image analysis should be incorporated 

to determine future applicability. 

 Unlike IA, DGGE analysis is already a proven technology for assessing the 

diversity of microbiological communities.  The process has direct applications to the 

study of the AS community’s response to variations in conditions.  In this study, the  
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primary focus was on the overall community response which was assessed via diversity 

indices and dendrograms comparing the presence/absence and relative concentration of 

populations within the community.  DNA technology allows for more advanced study 

beyond the focus of this report that has the potential to provide more specific information 

about the bacteria directly involved in the degradation of the SOCs.  Excising and 

sequencing of select bands from the DGGE gels can provide specific phylogenetic 

information about the populations within the AS community.  Selecting and sequencing 

bands that exhibit noticeable variations in intensity, or bands that appear or disappear, in 

response to external stimuli could provide for identification of the bacterial species that 

play a significant role in the removal of specific constituents or identify those populations 

more resistant or more susceptible to the toxicity of SOCs. 

Another DNA analysis technology that could be incorporated into future research 

is catabolic gene diversity analysis.  Catabolic gene diversity studies are the logical next 

step in evaluating the response of the AS community to toxic SOCs in the influent feed.  

As part of the SOC selection process used in this study, the biodegradation pathways 

were evaluated to determine specific enzymes involved in the removal of the SOCs.  This 

information could be utilized in future research to develop primers that will target the 

bacteria responsible for the biodegradation of the SOCs.  Using these SOC-specific 

primers, the catabolic gene diversity could be analyzed before and after the SOCs are 

incorporated into the feed.  Therefore, catabolic gene studies could potentially be applied 

to the samples taken during this experiment to validate and expound on the results of this 

study.  Analyzing the variations in the catabolic genes responsible for SOC degradation 
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could provide valuable information about the establishment of SOC-specific populations 

and the transformations that occur within the AS community due to external variations. 

More advanced monitoring capabilities of environmentally significant 

constituents in effluent waters typically leads to tightening limits on specific 

contaminants.  As the national, and even worldwide, trends continue in which effluent 

requirements become increasingly stringent, more advanced control of the biological 

treatment processes is necessary to achieve the level of treatment mandated by regulatory 

agencies.  Biological treatment processes are often more economical than 

physical/chemical processes, but when treating toxic compounds, these systems have an 

inherent risk of upsets and potential failure, especially in regards to removal of the toxic 

SOCs which could inhibit their own biodegradation.  Future research in this area is 

needed to provide a better understanding of the capabilities of biological processes for 

SOC removal. 
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ORIGINAL MOBIO DNA EXTRACTION PROTOCOL: 

1. Add 1.8 ml of microbial (bacteria, yeast) culture to a 2 ml Collection Tube and 
centrifuge at 10,000 x g for 30 seconds at room temperature.  Decant the 
supernatant and spin the tubes at 10,000 x g for 30 seconds at room temperature 
and completely remove the media supernatant with a pipet tip.  NOTE: Based on 
the type of microbial culture, it may be necessary to centrifuge longer than 30 
seconds. 

 
2. Resuspend the cell pellet in 300 µl of MicroBead Solution and gently vortex to 

mix.  Transfer resuspended cells to MicroBead Tube.  
 
3. Add 50 µl of Solution MD1 to the MicroBead Tube. 
 
4. Optional:  To increase yields, heat at 65ºC for 10 minutes. 
 
5. Secure bead tubes horizontally using the MO BIO Vortex Adapter tube holder for 

the vortex (Catalog No. 13000-V1) or secure tubes horizontally on a flat-bed 
vortex pad with tape. Vortex at maximum speed for 10 minutes.  

 
6. Make sure the 2 ml MicroBead Tubes rotate freely in the centrifuge without 

rubbing.  Centrifuge the tubes at 10,000 x g for 30 seconds at room temperature. 
CAUTION: Be sure not to exceed 10,000 x g or tubes may break. 

 
7. Transfer the supernatant to a clean 2 ml Collection Tube (provided). 
 
8. NOTE: Expect 300 to 350 µl of supernatant.  
 
9. Add 100 µl of Solution MD2, to the supernatant.  Vortex 5 seconds.  Then 

incubate at 4ºC for 5 minutes. 
 
10. Centrifuge the tubes at room temperature for 1 minute at 10,000 x g. 
 
11. Avoiding the pellet, transfer the entire volume of supernatant to a clean 2 ml 

Collection Tube.  Expect approximately 450 µl in volume. 
 
12. Add 900 µl of Solution MD3 to the supernatant and vortex 5 seconds.  
 
13. Load about 700 µl into the Spin Filter and centrifuge at 10,000 x g for 30 seconds 

at room temperature.  Discard the flow through, add the remaining supernatant to 
the Spin Filter, and centrifuge at 10,000 x g for 30 seconds at room temperature. 
NOTE: A total of 2 to 3 loads for each sample processed are required. Discard all 
flow through liquid. 
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14. Add 300 µl of Solution MD4 and centrifuge at room temperature for 30 seconds 
at 10,000 x g.  

15. Discard the flow through. 
 
16. Centrifuge at room temperature for 1 minute at 10,000 x g. 
 
17. Being careful not to splash liquid on the spin filter basket, place Spin Filter in a 

new 2 ml Collection Tube. 
 
18. Add 50 µl of Solution MD5 to the center of the white filter membrane.  
 
19. Centrifuge at room temperature for 30 seconds at 10,000 x g.  
 
20. Discard Spin Filter. The DNA in the tube is now ready for any downstream 

application.  Store at -20 ºC. 
 
 

MODIFIED DNA EXTRACTION PROTOCOL USING MOBIO KIT: 

1. Collect two 2 ml samples from activated sludge reactor in Collection Tubes by 
submerging in reactor and opening tubes. 

 
2. Centrifuge at 10,000 x g for 30 seconds at room temperature.  Decant 1.2 ml of 

supernatant.  Resuspend cell pellet with remaining supernatant and combine into 
single tubes. 

 
3. Centrifuge at 10,000 x g for 30 seconds at room temperature.  Decant supernatant 

and spin the tubes at 10,000 x g for 1 minute.  Completely remove the media 
supernatant with a pipet tip.   

 
4. Resuspend the cell pellet in 300 µl of MicroBead Solution and invert tube 3-5 

times to mix.  Transfer resuspended cells to MicroBead Tube.  
 
5. Add 50 µl of Solution MD1 to the MicroBead Tube. 
 
6. To increase yield, heat at 65ºC for 10 minutes in water bath. 
 
7. Secure bead tubes in Disrupter Genie and run at maximum speed for 5 minutes.  
 
8. Continue from Step 6 in the original MoBio DNA extraction protocol. 
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APPENDIX B 

ORIGINAL AND MODIFIED MICROSCOPIC IMAGE PROCESSING  

MATLAB CODES
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ORIGINAL MATLAB CODE: 
 
function newImage = Segmentation(I) 
%this is a function that will accept a color image as its input  
% and perform the object recognition 
 
%below 'im' just stands for 'image'.    
 
%this function displays four images along the course of the segmentation procedure  
%to help identify what is occurring along the way.  You can just remove the  
%"figure, imshow(im);" lines to prevent this, or add more  
%"figure, imshow(im)" lines after each line to see what occurs after every 
%single line, if one feels inclined to do that. 
 
%if there are any questions about functions, you can just simply type in 
%the function name at the MATLAB help menu, and the help menu will detail 
%each function. 
 
%written by Peter Rush 
%---------------------------------------------------------------------% 
%begin 
 
im = rgb2gray(I); %converts the color image into a gray-scale image 
 
im = imbothat(im, ones(15));  

%performs a bottom hat transformation with a structuring element of size 15 
            %ones(x) is a predefined matlab function that 
           %returns a matrix of size x by x, and every 

 %value is equal to 1 
                              
im = histeq(im); % performs a histogram equalization 
im = Threshold(im, IntermeansAlgorithm(im));  

%I wrote the threshold and IntermeansAlgorithm functions 
          %they can be found below 
 
im = im2bw(im); 

 %this just converts im from gray scale to a logical image 
            %this just means the values go from 0-255 (gray scale) to 
            %either 0 or 1 (logical). 1 = white, 0 = black 
 
im = ~im;  

%this just reverses the image, i.e. 1 becomes 0, 0 becomes 1 
           %the '~' can perform this operation on any logical array/matrix 
            %at any point beyond this, you can reverse the image from blac 

%floc with white background to white floc with black background  
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 %by using the "im = ~im;" function. However, it must be done 
 %before the 'imfill' function below or erratic results occur. 

 
im= imdilate(im, ones(2)); 

 %performs an image dilation with a structuring element of size 2. 
      %this improves the image 
                            
figure, imshow(im), title('image after dilation.' ); 

 %the imshow() function 
           %just displays the image 
 
im = ~im;  

%have to reverse it again to perform the 'imfill' function. 
%if you do not perform this line, 'imfill' performs erratically 

           
im = imfill(im, 'holes'); 

 %fills in holes in the flocs 
 
figure, imshow(im), title('image after imfill.' ); 
 
im = imerode(im, ones(3));  

% performs another erosion removing noise 
           %NOTE:  the line directly above this one 
           %requires human interaction to change the size of the  
           %structuring element (which is 'ones(3)' in this 
       %case) if the filaments or any other lines are 
           %still connected in the image that is shown 
          %by the 'imshow' function in the line below. If  
           %there are still filaments connected, just 
           %increase the size of ones(3) to ones(4) and run 
            %the code again. If still unsatisfactory, 
           %increase to ones(5), and so forth until 
            %satisfactory results occur. The flocs become smaller  
           %though as the integer increases; the line  
            %im = imdilate(im, ones(2));  
                            
          %can be performed to "grow" the function to a larger size.  
            %Increase 2 as done above until satisfactory results 
           %occur. 
                            
            %for example, the image '10x3.bmp' image sent to 
            %me requires ones(3) to disconnect all 
            %filaments,but '10x4.bmp' requires ones(4).  
            %I have to go back and manually increase this 
            %each time I change between the two images. 
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figure, imshow(im), title('image after erosion'); 
 
im = bwareaopen(im, 1000); 

 %this just removes all elements from the image  
            %that are less than 1000 pixels in size (size 
            %here just means the number of connected pixels) 
                            
           %You can increase or decrease the 1000, but I 
           %find 1000 to be simple and satisfactory 
 
figure, imshow(im), title('after bwareaopen() call'); 
 
newImage = im;                                                
                                              
%end Segmentation.m                                             
%---------------------------------------------------------------------% 
 
%---------------------------------------------------------------------% 
%begin Intermeans Algorithm 
 
function t = IntermeansAlgorithm(originalImage) 

% this function will perform the Intermeans Algorithm  
%it accepts the variable “originalImage”, and returns  
%the integer t, which will be the thresholding value for that specific 
%image that satisfies the Intermeans Algorithm  

 
dimensions = size(originalImage); 

%this returns a 2 element vector into "dimensions", 
           %1st being row size, the 2nd being column size 
 
rows = dimensions(1);  

%sets the variable rows to the # of rows in the matrix passed to the function 
 
cols = dimensions(2);  

%sets the variable cols to the # of columns in the matrix passed to the function 
 
H(256) = 0;  

%creates an array of 256 elements that will be used to store the occurrence 
            %of each pixel value in the image 
 
for i = 1 :rows 
    for j = 1 : cols 
        temp = originalImage(i,j) ; %must use temp + 1 since image is from 0-255 
        H( temp +1 ) = H(temp + 1) + 1; %but array is from 1-256 
    end %ends the for j=1 
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end %ends the for i=1 
 
%Now H has the occurence of each pixel value stored in the array index of 
%that pixel value + 1 
 
%Need to perform intermeans algorithm 
t = median(H); % t is the median value of H 
temp = 0; %this is a temporary storage value containing t's value the previous iteration 
 
while(t ~= temp) 
    temp = t; 
    u1 = 0; u2 = 0; u1_ = 0; u2_ = 0;  

%restores these summation values back to zero 
            %after each iteration 
 
    for i=1: t  
        %need error handling to make sure H(i) isn't zero 
        %so a "divide by zero" warning doesn't occur 
        

 if(H(i) ~= 0)        
            u1 = u1 + ((i-1) * H(i) ) ; %first summation of u1 (numerator) 
            u1_ = u1_ + H(i); %second summation of u1 (the denominator) 
        end %end if 
    end %end for     
 
    for i = t+1: 256 
       if(H(i) ~= 0)  %again,need error handling to avoid "divide by zero"         
            u2 = u2 + ( (i-1) * H(i) );  %first summation of u2 (numerator) 
            u2_ = u2_ + H(i);           %second summation of u2 (the denominator) 
       end %end if 
    end %end for 
     
    if(u1_ ~= 0 && u2_ ~= 0) 
        u1 = u1/ u1_ ; 
        u2 = u2/ u2_ ;     
    end 
     
    %now, need to make t the average of the 2 values, storing t as integer    
    t = floor((u1 + u2)/2) ; 
end 
%end Intermeans Algorithm  
%---------------------------------------------------------------------% 
 
%---------------------------------------------------------------------% 
%begin Threshold 
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 function newImage = Threshold(originalImage, t) 
% this function will perform a single threshold;  
%it accepts the variable “originalImage” and integer t, and returns the variable 
%newImage, which will be the new image after the algorithm is performed on the 
%original image; all values less than or equal to t become 0, and all those 
%greater become 255 

 
newImage = originalImage;  

%I do this to allocates memory space for newImage 
dimensions = size(originalImage); 

%this returns a 2 element vector into "dimensions", 
           %1st being row size, the 2nd being column size 
rows = dimensions(1);  

%sets the variable rows to the # of rows in the matrix passed to the function 
cols = dimensions(2);  

%sets the variable cols to the # of columns in the matrix passed to the function 
for i = 1 :rows 
    for j = 1 : cols 
        if(originalImage(i,j) <= t) 
            newImage(i,j) = 0; 
        else 
            newImage(i,j ) = 255; 
        end 
    end %ends the for j=1 ... 
end %ends the for i=1... 
 
%end Threshold function 
%---------------------------------------------------------------------% 
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MODIFIED MATLAB CODE: 
 
function [DataTable] = ImageAnal(foldername,reactortype,a,b,c) 

%Function carries out image analysis on all images in a folder of a given 
%reactor type, and if c is greater than one and b is less than a it will  
%do multiple iterations of a random subset of the data to check for  
%reproducibility of results. 
%Function returns a data table that gives results from a permutation check 
%of the data from the processed images.  The input is foldername = complete 
%folder location, reactortype =  SBR or CMAS, a = number of slides to be 
%processed, b = number of slides per permutation, c = number of iterations 
%to be performed. 

%---------------------------------------------------------------------% 
%begin 
format long; 
 
  %The following is in order to use on R images 
  %where R will be a random permutation of the slides. 
    q = 1;  

% q is used to count the total number of flocs (i.e. the number of times through 
%the loop). 

    p = 1; % used to store loop number in case choose starting j not equal to 1. 
    for j = 1:a 
        str = strcat( foldername, reactortype,'4x' , int2str(j),'.bmp'); 

 %concatenates string name & j & .bmp 
          %Currently, folder name is 'Floc images/Month Year/Mo. Day/' 
 
        eval('I=imread(str);'); %performs imread funtion of str into I 
        im = Segmentation(I);   %Carries out segmentation program on image I 
 
        [im2,numObjects] = bwlabel(im);  

%labels connected objects  with same and gives total number of objects 
 
        stats = regionprops(im2,'Area','Perimeter','EquivDiameter', 

'MajorAxisLength','MinorAxisLength');  
          % finds the desired properties of the images 
           % More or less properties can be added, but the way the current code 
           % is constructed user must edit the number of columns in array A below, and  
           % must change the properties in the storing loop below. 
            %loop for storing stats in Array A 
  
           for w = 1:numObjects 
                 m = p + w -1;  

% Used to set m = 1 if i and j both equal 1.  
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                if (m = = 1) 
 A = [p w stats(w).Area stats(w).Perimeter stats(w).EquivDiameter 
stats(w).MajorAxisLength stats(w).MinorAxisLength ];  

           % Stores info for first time so successive stats can be added in  
            % additional rows to the same matrix. 

                end %ends if 
 
                if (m > 1) 

A = [A; p w stats(w).Area stats(w).Perimeter stats(w).EquivDiameter 
stats(w).MajorAxisLength stats(w).MinorAxisLength ]; 
 % Stores data in successive rows for each image/floc. 

                end  %ends if 
 
                q = q + 1; %counts number of flocs. 
            end %ends for b = 1.... 
        p = p+1;  %counts loop iterations. 
    end %ends j = 1... 
 
    DataTable{1,1} = 'Iteration'; 
    DataTable{1,2} = 'Total Images'; 
    DataTable{1,3} = 'Total Flocs'; 
    DataTable{1,4} = 'Avg Area'; 
    DataTable{1,5} = 'Area SD'; 
    DataTable{1,6} = 'Area Cu'; 
    DataTable{1,7} = 'Avg Eq. Dia.'; 
    DataTable{1,8} = 'Eq. Dia. SD'; 
    DataTable{1,9} = 'Eq. Dia. Cu'; 
    DataTable{1,10} = 'Avg Form Factor'; 
    DataTable{1,11} = 'FF SD'; 
    DataTable{1,12} = 'FF Cu'; 
    DataTable{1,13} = 'Avg Aspect Ratio'; 
    DataTable{1,14} = 'AR SD'; 
    DataTable{1,15} = 'AR Cu'; 
    DataTable{1,16} = 'Avg Roundness'; 
    DataTable{1,17} = 'RD SD'; 
    DataTable{1,18} = 'RD Cu'; 
    DataTable{1,19} = 'Unused images'; 
     
    if c>1 %does multiple permutations and iterations if c is greater than one. 
       for x=1:c 
        check = 1; %set to one to establish first array row 
        R = randperm(a); 
        for i =1:b %calculations for b subsets 
            for k = 1:(q-1); %subset for q flocs 
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                if (R(1,i)==A(k,1))&(check~=1) 
                    Array = [Array; A(k,:)]; 
                    tflocs = tflocs + 1; 
                end %ends if 
                 
                if (R(1,i)==A(k,1))&(check == 1) 
                    Array = A(k,:); 
                    check = 2; 
                    tflocs = 1; %to count total flocs in the given subset 
                end %ends if 
              end %ends k = 1.... 
        end %ends i = 1.... 
        
        Totalflocs = tflocs; 
 
        [Aavg, Astd, CuA] = Area(Array, Totalflocs);    

%Calls Area function that manipulates Area data 
        [EqDavg, EqDstd, CuD] = EquivDia(A,Totalflocs); 

 %Calls EquivDia function that manipulates Equivalent Diameter data 
        [FFavg, FFstd, Cff] = FormFactor(A, Totalflocs);  

%Calls FormFactor function to calculate Form Factor  
        [ARavg, ARstd, Car] = AspectRatio(A, Totalflocs);  

%Calls function to calculate Aspect Ratio 
        [RDavg, RDstd, Crd] = Roundness(A, Totalflocs);  

%Calls function to calculate Roundness 
 
        for z = 1:(a-b) 
          if (z == 1) 
            str3 = int2str(R(1,1+b)); 
          end %ends if 
         
          if z >1 
             str2 = int2str(R(1,(z+b))); 
             str3 = strcat( str3, ',', str2); 
          end 
        end %ends for z = 1.. 
         
          DataTable{x+1,1} = x; 
          DataTable{x+1,2} = b; 
          DataTable{x+1,3} = Totalflocs; 
          DataTable{x+1,4} = Aavg; 
          DataTable{x+1,5} = Astd; 
          DataTable{x+1,6} = CuA; 
          DataTable{x+1,7} = EqDavg; 
          DataTable{x+1,8} = EqDstd; 
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          DataTable{x+1,9} = CuD; 
          DataTable{x+1,10} = FFavg; 
          DataTable{x+1,11} = FFstd; 
          DataTable{x+1,12} = Cff; 
          DataTable{x+1,13} = ARavg; 
          DataTable{x+1,14} = ARstd; 
          DataTable{x+1,15} = Car; 
          DataTable{x+1,16} = RDavg; 
          DataTable{x+1,17} = RDstd; 
          DataTable{x+1,18} = Crd; 
          DataTable{x+1,19} = str3; 
       end %ends for x.... 
    end %ends if c>1 
     
if (c == 1) %if you are only doing a single iteration 
        Totalflocs = (q-1); 
        [Aavg, Astd, CuA] = Area(A, Totalflocs);     

%Calls function that manipulates Area data 
        [EqDavg, EqDstd, CuD] = EquivDia(A,Totalflocs);  

%Calls function that manipulates Equivalent Diameter data 
        [FFavg, FFstd, Cff] = FormFactor(A, Totalflocs); 

 %Calls function to calculate Form Factor  
        [ARavg, ARstd, Car] = AspectRatio(A, Totalflocs); 

 %Calls function to calculate Aspect Ratio 
        [RDavg, RDstd, Crd] = Roundness(A, Totalflocs);  

%Calls function to calculate Roundness 
         
     x = 1; 
          DataTable{x+1,1} = x; 
          DataTable{x+1,2} = a; 
          DataTable{x+1,3} = Totalflocs; 
          DataTable{x+1,4} = Aavg; 
          DataTable{x+1,5} = Astd; 
          DataTable{x+1,6} = CuA; 
          DataTable{x+1,7} = EqDavg; 
          DataTable{x+1,8} = EqDstd; 
          DataTable{x+1,9} = CuD; 
          DataTable{x+1,10} = FFavg; 
          DataTable{x+1,11} = FFstd; 
          DataTable{x+1,12} = Cff; 
          DataTable{x+1,13} = ARavg; 
          DataTable{x+1,14} = ARstd; 
          DataTable{x+1,15} = Car; 
          DataTable{x+1,16} = RDavg; 
          DataTable{x+1,17} = RDstd; 
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          DataTable{x+1,18} = Crd; 
          DataTable{x+1,19} = 0; 
    End % ends c = 1. 
 
 %Output variables 
DataTable; 
A; 
end %ends ImageAnal  
%------------------------------------------------------------------------- 
 
%------------------------------------------------------------------------- 
%begin Segmentation 
 
function newImage = Segmentation(I) 
%this is a function that will accept a color image as its input  
% and perform the object recognition based on Segmentation program 
% developed by Peter Rush of the Computer Science Department at MSU 
 
im = I; 
x = graythresh(im); 
 % Selects threshold value for determining cutoff value for black and white 
 % to allow distinguishing particles from background. 
 
im = im2bw(im,x);   

%this just converts im from gray scale to a logical image 
            %this just means the values go from 0-255 (gray scale) to 
            %either 0 or 1 (logical). 1 = white, 0 = black 
 
im = ~im;  

%this just reverses the image, i.e. 1 becomes 0, 0 becomes 1 
                        
for k=1:6          

%Used to place border around images in order to not completely fill  
         %flocs that are in contact with edge. 
    im(:,k)= 0; 
    im(:,641-k)=0; 
    im(k,:)=0; 
    im(481-k,:)=0; 
end %ends for k=1... 
 
SE = strel('disk', 4);  

%defines structuring element strel('<shape>','<size of element>') 
%a disk of size 4 was subjectively determined to provide the ‘best’ results 
% through trials of numerous structural elements available in the software. 
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im= imdilate(im, SE);  
%performs an image dilation with a structuring element SE. 

             
im = imfill(im, 'holes'); %fills in holes in the flocs 
 
im = bwareaopen(im, 200);  

%this removes all elements from the image  
%that are less than 200 pixels in size (size 

   %here just means the number of connected pixels) 
            %You can increase or decrease the 200, but I 
            %find 200 satisfactory. 
 
im = imerode(im, ones(5));  

% performs erosion removing noise  and making the appearance of the edges 
% of the flocs more reflective of the original images. 

                            
newImage = im; %end Segmentation 
%---------------------------------------------------------------------% 
 
%---------------------------------------------------------------------% 
%begin Area function 
 
function [Aavg, Astd, CuA] = Area(A, totalflocs) 
%Arranges Area data for histogram plot and D60/D10 
%calculations to allow for uniformity coefficient.  Input is A matrix from ImageAnal 
%which contains the data for all the flocs and totalflocs which is a count variable for all 
%the flocs. 
 
%Clear variables  
clear Pval SortedA y Aavg Astd Area bin Dsixty Dten CuA 
 
Area = A(:,3);    %Select area column from array A passed from ImageAnal 
Aavg = mean(Area); %Calculates average area from slide 
Astd = std(Area); % Calculates standard deviation of area from slide 
SortedA = sort(Area, 'descend'); %Sorts area data 
 
bin = 0:1000:max(Area);    

%selects bin size for the histogram of the area data, larger or smaller values 
%ultimately affect sensitivity for smaller flocs.  You need to be able to 
%differentiate enough so that 
%the D10 (particles smaller than 10% of the flocs) and D60 (particles smaller 
%than 60% of flocs can be found.  

 
%Output a histogram of data (if preferred). 
%figure, hist(Area,bin), title('Area Histogram')        
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%Calculate percentage values for number of flocs 
%Using Weibull method for probability calculations 
for k = 1:totalflocs 
    Pval(k,1) = 100-(k/(totalflocs+1)*100); 
end %ends for k = 1... 
 
%Place in single two-column table so that interpolation can be performed. 
y = horzcat(Pval, SortedA); 
 
%Interpolation for size of floc at 60% and 10% 
Dsixty = interp1(y(:,1),y(:,2),60); 
Dten = interp1(y(:,1),y(:,2), 10); 
 
%Output of semilog plot (if desired). 
%figure, semilogx(SortedA,Pval), title('Semi-log of Area') 
%hold on 
%plot(Dsixty,60,'o','MarkerSize', 3) 
%plot(Dten, 10, 'o', 'MarkerSize', 3) 
%hold off 
%set(gca,'XDir','reverse') 
 
%Output uniformity coefficient 
CuA = Dsixty/Dten; 
 
%end Area function 
%---------------------------------------------------------------------% 
 
%---------------------------------------------------------------------% 
%begin Equivalent Diameter function 
 
function [EqDavg, EqDstd, CuD] = EquivDia(A,totalflocs) 
%Arranges Equivalent diameter data for histogram plot and D60/D10 
%calculations to allow for uniformity coefficient.  Input is A matrix from ImageAnal 
%which contains the data for all the flocs and totalflocs which is a count variable for all 
%the flocs. 
 
%Clear variables 
clear EqDia EqDavg EqDstd SortedD binD Pval2 yD Dsixty Dten CuD 
 
EqDia = A(:,5); %Equivalent diameter column selected from Array A 
EqDavg = mean(EqDia); %Calculates average 
EqDstd = std(EqDia);  % Calculates standard deviation 
SortedD = sort(EqDia,'descend'); %Data is sorted from largest to smallest 
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binD = 0:10:max(EqDia);   
%bins for diameter histogram are set.  In this case 
%10 is currently used, but should be changed to 

           %give a good representation of the data. 
                          
%Output histogram (if desired). 
%figure, hist(EqDia,binD), title('Equivalent Diameter Histogram') 
 
%Calculate percentage values for number of flocs 
%Using Weibull method for probability calculations 
for k = 1:totalflocs 
    Pval2(k,1) = 100-(k/(totalflocs+1)*100); 
end %ends for k = 1... 
 
%Place in single two-column table so that interpolation can be performed. 
yD = horzcat(Pval2,SortedD); 
 
%Interpolation for size of floc at 60% and 10% 
Dsixty = interp1(yD(:,1),yD(:,2),60); 
Dten = interp1(yD(:,1),yD(:,2), 10); 
 
%Output semilog plot (if desired). 
%figure, semilogx(SortedD,Pval2), title('Semi-log of Eq. Dia.') 
%hold on 
%plot(Dsixty,60,'o','MarkerSize', 3) 
%plot(Dten, 10, 'o', 'MarkerSize', 3) 
%hold off 
%set(gca,'XDir','reverse') 
 
%Output uniformity coefficient 
CuD = Dsixty/Dten; 
 
%end Equivalent Diameter function 
%---------------------------------------------------------------------% 
 
%---------------------------------------------------------------------% 
%begin Form Factor function 
 
function [FF, FFavg, FFstd, Cff] = FormFactor(A, totalflocs); 
 
%Calculates the form factor for each of the individual flocs and then does 
%the weibull method and calculates uniformity coefficient Cff. 
 
%NOTE: the area and perimeter are both given in pixels, however in this 
%does impart some error on the process, since the pixel value is actually 
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%an area term, and perimeter should be a length term. -A pixel is a square 
%(or rectangle) with two side lengths. 
 
%Clear variables 
clear Area Perimeter FFavg FFstd SortedFF binFF Pval3 yFF Dsixty Dten Cff 
 
Area = A(:,3); %Assign Area array from passed column from array A 
 
Perimeter = A(:,4); %Assign Perimeter array from passed column from Array A 
 
%Calculate form factor for all flocs 
for i = 1:totalflocs 
    FF(i,1) = 4*pi*Area(i,1)/(Perimeter(i,1))^2;  

%Calculates form factor = 4*pi*area/perimeter^2 
end 
 
FFavg = mean(FF); %Calculate average form factor 
FFstd = std(FF); %Calculate standard deviation for form factor 
SortedFF = sort(FF, 'descend'); %Sort in descending order 
binFF = 0:.05:max(FF); %sets up equal bins from 0 to max in 0.05 intervals. 
 
 
%Output histogram (if desired) 
%figure, hist(FF,binFF), title('Form Factor Histogram') 
 
%Calculate percentage values for number of flocs 
%Using Weibull method for probability calculations 
for k = 1:totalflocs 
    Pval3(k,1) = 100-(k/(totalflocs+1)*100); 
end %ends for k = 1... 
 
%Place in single two-column table so that interpolation can be performed. 
yFF = horzcat(Pval3,SortedFF); 
 
%Interpolation for size of floc at 60% and 10% 
Dsixty = interp1(yFF(:,1),yFF(:,2),60); 
Dten = interp1(yFF(:,1),yFF(:,2), 10); 
 
%Output semilog plot (if desired) 
%figure, semilogx(SortedFF,Pval3), title('Semi-log of FF') 
%hold on 
%plot(Dsixty,60,'o','MarkerSize', 3) 
%plot(Dten, 10, 'o', 'MarkerSize', 3) 
%hold off 
%set(gca,'XDir','reverse') 
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%Output uniformity coefficient 
Cff = Dsixty/Dten; 
 
%end Form Factor function 
%---------------------------------------------------------------------% 
 
%---------------------------------------------------------------------% 
%begin Aspect Ratio function 
 
function [AR, ARavg, ARstd, Car] = AspectRatio(A, totalflocs); 
 
%Calculates the aspect ratio of the given floc.  Input variables are A = 
%floc properties matrix and totalflocs = total number of flocs from 
%ImageAnal function 
 
%NOTE: The aspect ratio uses the length and width which are taken as the 
%major axis length and minor axis length, repectively. These values are used 
%as a pixel count and not in actual length dimensions, which potentially 
%imparts error, since the pixels are two-dimensional objects. 
 
%Clear variables 
clear Length Widte ARavg ARstd SortedAR binAR Pval4 yAR Dsixty Dten Car 
Length = A(:,6); %Set length equal to major axis length 
Width = A(:,7); %Set width equal to minor axis length 
 
for i = 1:totalflocs 
    AR(i,1) = 1.0 + (4/pi)*((Length(i,1)/Width(i,1))-1.0);  
    %Calculates Aspect ratio of the individual flocs 
end 
 
ARavg = mean(AR); %Calculates average 
ARstd = std(AR); %Calculates standard deviation 
SortedAR = sort(AR, 'descend'); %Sort data in descending order 
 
binAR = 0:.05:max(AR); %sets up equal bins from 0 to max in 0.05 intervals. 
 
%Output histogram (if desired) 
%figure, hist(AR,binAR), title('Aspect Ratio Histogram') 
 
%Calculate percentage values for number of flocs 
%Using Weibull method for probability calculations 
for k = 1:totalflocs 
    Pval4(k,1) = 100-(k/(totalflocs+1)*100); 
end %ends for k = 1... 
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%Place in single two-column table so that interpolation can be performed. 
yAR = horzcat(Pval4,SortedAR); 
 
%Interpolation for size of floc at 60% and 10% 
Dsixty = interp1(yAR(:,1),yAR(:,2),60); 
Dten = interp1(yAR(:,1),yAR(:,2), 10); 
 
%Output semilog plot (if desired) 
%figure, semilogx(SortedAR,Pval4), title('Semi-log of AR') 
%hold on 
%plot(Dsixty,60,'o','MarkerSize', 3) 
%plot(Dten, 10, 'o', 'MarkerSize', 3) 
%hold off 
%set(gca,'XDir','reverse') 
%Output uniformity coefficient 
Car = Dsixty/Dten; 
 
%end Aspect Ration function 
%---------------------------------------------------------------------% 
 
%---------------------------------------------------------------------% 
%begin Roundness function 
function [RD, RDavg, RDstd, Crd] = Roundness(A, totalflocs); 
 
%Calculates the roundness of the given floc.  Input variables are A = 
%floc properties matrix and totalflocs = total number of flocs from 
%makeloop function.  The roundness varies between 0 and 1 and gives an 
%indication of the elongation of an object.  Circle = 1.  Infinitely long 
%rectangle approaches 0. 
 
%NOTE: The roundness uses the length which is taken as the 
%major axis length.  These values are given in terms  
%of pixel count and not as length dimensions. 
 
%Clear variables 
clear Length Area RDavg RDstd SortedRD Pval5 yRD Dsixty Dten Crd 
 
Length = A(:,6); %Set length equal to major axis length 
Area = A(:,3); %Select Area from array A 
 
for i = 1:totalflocs 
    RD(i,1) = (4*Area(i,1))/(pi*(Length(i,1))^2);  
    %Calculates Roundness of the individual flocs 
end 
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RDavg = mean(RD); %Calculate average 
RDstd = std(RD); %Calculate standard deviation 
SortedRD = sort(RD, 'descend'); %Sort in descending order 
 
%binRD = 0:.05:max(RD); %sets up equal bins from 0 to max in 0.05 intervals. 
 
%Output histogram (if desired) 
%figure, hist(RD,binRD), title('Roundness Histogram') 
 
%Calculate percentage values for number of flocs 
%Using Weibull method for probability calculations 
for k = 1:totalflocs 
    Pval5(k,1) = 100-(k/(totalflocs+1)*100); 
end %ends for k = 1... 
%Place in single two-column table so that interpolation can be performed. 
yRD = horzcat(Pval5,SortedRD); 
 
%Interpolation for size of floc at 60% and 10% 
Dsixty = interp1(yRD(:,1),yRD(:,2),60); 
Dten = interp1(yRD(:,1),yRD(:,2), 10); 
 
 
%Output semilog plot (if desired) 
%figure, semilogx(SortedRD,Pval5), title('Semi-log of RD') 
%hold on 
%plot(Dsixty,60,'o','MarkerSize', 3) 
%plot(Dten, 10, 'o', 'MarkerSize', 3) 
%hold off 
%set(gca,'XDir','reverse') 
 
%Output uniformity coefficient 
Crd = Dsixty/Dten; 
 
%end Roundness function 
%---------------------------------------------------------------------% 
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